Atmospheric pressure measurements based on microelectromechanical systems (MEMSs) can extend accessibility to altitude information. A differential pressure sensor using a thin cantilever and an air chamber is a promising sensing element for sub-centimeter resolution. However, its vulnerability to wind and the lack of height estimation algorithms for real-time operation are issues that remain to be solved.
View Article and Find Full Text PDFIt is expected that human iPS cell-derived cardiomyocytes (hiPSC-CMs) can be used to treat serious heart diseases. However, the properties and functions of human adult cardiomyocytes and hiPSC-CMs, including cell maturation, differ. In this study, we focused on the temperature dependence of hiPSC-CMs by integrating the temperature regulation system into our sensor platform, which can directly and quantitatively measure their mechanical motion.
View Article and Find Full Text PDFNeuronal activities underlying a percept are constrained by the physics of sensory signals. In the tactile sense such constraints are frictional stick-slip events, occurring, amongst other vibrotactile features, when tactile sensors are in contact with objects. We reveal new biomechanical phenomena about the transmission of these microNewton forces at the tip of a rat's whisker, where they occur, to the base where they engage primary afferents.
View Article and Find Full Text PDFMicromachines (Basel)
March 2021
A tensor sensor can be used to measure deformations in an object that are not visible to the naked eye by detecting the stress change inside the object. Such sensors have a wide range of application. For example, a tensor sensor can be used to predict fatigue in building materials by detecting the stress change inside the materials, thereby preventing accidents.
View Article and Find Full Text PDFMinim Invasive Ther Allied Technol
January 2022
Introduction: As the benefits of minimally invasive surgery are recognized, the rate of laparoscopic liver resection (LLR) is rapidly increasing. Liver tissue is fragile compared to tissue of the stomach and colon. In endoscopic and robotic surgery, sufficient tactile sensation is yet to be obtained.
View Article and Find Full Text PDFThis paper reports on a microelectromechanical systems (MEMS)-based sensor for pulse wave measurement. The sensor consists of an air chamber with a thin membrane and a 300-nm thick piezoresistive cantilever placed inside the chamber. When the membrane of the chamber is in contact with the skin above a vessel of a subject, the pulse wave of the subject causes the membrane to deform, leading to a change in the chamber pressure.
View Article and Find Full Text PDFIn this study, we analyzed the vertical driving performance of multiple connected magnetic wheel-driven microrobots when moving up and down a small cylinder that simulated a pipe. The dynamics of pipe climbing by the magnetic wheel-driven microrobot were analyzed considering the magnetic attraction force and slip; a vertical climbing simulator was developed considering the hoop force and external force from the adjacent microrobots to determine the magnetic attraction force required for multiple connected microrobot pipe climbing. A prototype of an independent vertical climbing microrobot, 5 mm long, 9 mm wide, and 6.
View Article and Find Full Text PDFA current detection surface plasmon resonance (SPR) sensor with an Au grating on an n-Si wafer was proposed. SPR excitation light is illuminated from the backside of the device and diffracted by the grating. Since the diffraction provides matching conditions, SPR can be coupled to the Au/analyte interface.
View Article and Find Full Text PDFMicromachines (Basel)
June 2019
This study investigated slip and magnetic attraction effects in a skid-steered magnetic-wheeled microrobot. The dynamics of the microrobot were derived by considering the slip and magnetic attraction of the wheels. In addition, the slip characteristics of the magnetic wheels were measured using an evaluation apparatus built for this purpose.
View Article and Find Full Text PDFEthanol concentration was quantified by the use of a compact surface plasmon resonance (SPR) system, which electrically detects hot electrons via a Schottky barrier. Although it is well known that SPR can be used as bio/chemical sensors, implementation is not necessarily practical, due to the size and cost impediments associated with a system with variable wavelength or angle of incidence. However, scanning capability is not a prerequisite if the objective is to use SPR in a sensor.
View Article and Find Full Text PDFWe measured the three-axis ground reaction force (GRF) distribution during straight walking. Small three-axis force sensors composed of rubber and sensor chips were fabricated and calibrated. After sensor calibration, 16 force sensors were attached to the left shoe.
View Article and Find Full Text PDFWe present a near-infrared (NIR) spectrum measurement method using a Schottky photodetector enhanced by surface plasmon resonance (SPR). An Au grating was fabricated on an n-type silicon wafer to form a Schottky barrier and act as an SPR coupler. The resulting photodetector provides wavelength-selective photodetection depending on the SPR coupling angle.
View Article and Find Full Text PDFThis paper describes a theoretical estimation of the geometry of negative epoxy-resist microneedles prepared via inclined/rotated ultraviolet (UV) lithography based on spatially controlled UV exposure doses. In comparison with other methods based on UV lithography, the present method can create microneedle structures with high scalability. When negative photoresist is exposed to inclined/rotated UV through circular mask patterns, a three-dimensional, needle-shaped distribution of the exposure dose forms in the irradiated region.
View Article and Find Full Text PDFSurfaces covered with hydrophobic micro-/nanoscale textures can allow water droplets to slide easily because of low contact angle hysteresis. In contrast to the case of a droplet sliding on a smooth surface, when a droplet slides on a textured surface, it must recede from the textures at its rear edge and the resultant depinning events induce a capillary wave on the surface of the droplet. Although this depinning-induced capillary wave can be observed to some extent through high-speed imaging, important parameters of the wave, such as the wavelength and frequency, and the factors that determine these parameters are not fully understood.
View Article and Find Full Text PDFThis paper reports on a tactile sensor using piezoresistive beams for detection of the coefficient of static friction merely by pressing the sensor against an object. The sensor chip is composed of three pairs of piezoresistive beams arranged in parallel and embedded in an elastomer; this sensor is able to measure the vertical and lateral strains of the elastomer. The coefficient of static friction is estimated from the ratio of the fractional resistance changes corresponding to the sensing elements of vertical and lateral strains when the sensor is in contact with an object surface.
View Article and Find Full Text PDFWe propose a reconfigurable terahertz (THz) metamaterial that can control the transmittance by out-of-plane actuation with changing the sub-micron gap distance between electrically coupled metamaterial elements. By using the out-of-plane actuation, it was possible to avoid contact between the coupled metamaterial elements across the small initial gap during the adjustment of the gap size. THz spectroscopy was performed during actuation, and the transmission dip frequency was confirmed to be tunable from 0.
View Article and Find Full Text PDFActive modulation of the polarization states of terahertz light is indispensable for polarization-sensitive spectroscopy, having important applications such as non-contact Hall measurements, vibrational circular dichroism measurements and anisotropy imaging. In the terahertz region, the lack of a polarization modulator similar to a photoelastic modulator in the visible range hampers expansion of such spectroscopy. A terahertz chiral metamaterial has a huge optical activity unavailable in nature; nevertheless, its modulation is still challenging.
View Article and Find Full Text PDFWe report a simple technique to measure the free vibration of microlitre-sized droplets using an array of thirteen MEMS-based piezoresistive cantilevers and demonstrate its application for the measurement of viscosity. Because the damping of the free vibration of a liquid droplet is known to be affected by the viscosity of the liquid, measuring the vibration of a droplet allows the viscosity to be estimated from a dilute sample volume. However, conventional methods to measure the droplet vibration require sophisticated apparatuses, which hinder the development of a portable viscometer.
View Article and Find Full Text PDFWe propose a method to measure light transmittance of layered metamaterials by placing the metamaterials directly on a Si photodiode. Our measurement method enables the direct detection of transmitted light that appears as an evanescent wave in natural materials. Here, we report the transmittance measurements of a typical metamaterial using this method.
View Article and Find Full Text PDFWe firstly introduce a facile method for the site-specific direct physical exfoliation of few-layer graphene sheets from cheap and easily enlargeable graphite grown on a Ni foil using an optimized polydimethylsiloxane (PDMS) stamp. By decreasing the PDMS cross-linking time, the PDMS elasticity is reduced to ∼52 kPa, similar to that of a typical gel. As a result of this process, the PDMS becomes more flexible yet remains in a handleable state as a stamp.
View Article and Find Full Text PDFA temperature sensor that uses temperature-sensitive fluorescent dyes is developed. The droplet sensor has a diameter of 40 µm and uses 1 g/L of Rhodamine B (RhB) and 0.5 g/L of Rhodamine 110 (Rh110), which are fluorescent dyes that are dissolved in an ionic liquid (1-ethyl-3-methylimidazolium ethyl sulfate) to function as temperature indicators.
View Article and Find Full Text PDFWe measured and analyzed the electrochemical impedance of carbon nanotube (CNT) probe electrodes fabricated through the physical separation of insulated CNT bridges. The fabricated CNT electrodes were free-standing CNTs that were completely covered with an insulator, except for their tips. Typical dimensions of the nanoelectrodes were 1-10 nm in CNT diameter, 80-300 nm in insulator diameter, 0.
View Article and Find Full Text PDFWe propose a strain measurement method utilizing light scattered by a pair of nano-disks onto an elastomer sheet. Such nanoparticle pairs exhibit a scattering spectrum that is dependent on the gap distance and the incident light polarization. We utilized this behavior by forming nano-disk pairs with a diameter of 105 nm and a gap of 20-50 nm on a polydimethylsiloxane (PDMS) sheet so that the gap could be altered with strain.
View Article and Find Full Text PDFAn insect can perform various flight maneuvers. However, the aerodynamic force generated by real insect wings during free flight has never been measured directly. In this study, we present the direct measurement of the four points of the differential pressures acting on the wing surface of a flying insect.
View Article and Find Full Text PDF