Premise Of The Study: Understanding the origin and early evolution of vascular plants requires thorough consideration of the gametophyte generation of ferns and lycophytes. Unfortunately, information about this generation is quite limited. To reveal the origin and evolution of varied gametophyte shapes, we used comparative morphological studies of meristem behavior of gametophytes of Lygodium japonicum, which exhibit the typical cordate shape.
View Article and Find Full Text PDFPurpose: Although p42/p44 mitogen-activated protein kinase (MAPK) negatively modulates protein secretion stimulated by cholinergic and alpha(1D)-adrenergic agonists, it does not play a role in epidermal growth factor (EGF)-stimulated protein secretion. Therefore, this study was conducted to determine the roles that protein kinase C (PKC), intracellular Ca(2+) ([Ca(2+)](i)), and nonreceptor tyrosine kinases Pyk2 and Src play in the activation of agonist- and EGF-stimulated MAPK activation.
Methods: Lacrimal gland acini were isolated by collagenase digestion and incubated with phorbol 12-myristate 13-acetate (PMA) to activate PKC or ionomycin, a Ca(2+) ionophore.
The purpose of this study was to determine the role of p42/p44 mitogen-activated protein kinase (MAPK) in alpha(1)-adrenergically and cholinergically stimulated protein secretion in rat lacrimal gland acinar cells and the pathways used by these agonists to activate MAPK. Acini were isolated by collagenase digestion and incubated with the alpha(1)-adrenergic agonist phenylephrine or the cholinergic agonist carbachol, and activation of MAPK and protein secretion were then measured. Phenylephrine and carbachol activated MAPK in a time- and concentration-dependent manner.
View Article and Find Full Text PDF