We experimentally investigate the generation and synchronization of bandwidth-enhanced chaos in a semiconductor laser (drive laser) that is subject to optical injection from another chaotic semiconductor laser (injection laser) with optical feedback. Effective bandwidth enhancement is achieved over 12 GHz, under the condition in which the optical wavelength of the drive laser is positively detuned with respect to that of the injection laser, outside the injection locking range. The bandwidth-enhanced chaotic signal of the drive laser is injected into a third semiconductor laser (response laser) for synchronization.
View Article and Find Full Text PDFWe investigate the dynamics of two semiconductor lasers with separate optical feedback when they are driven by a common signal injected from a chaotic laser under the condition of non-identical drive and response. We experimentally and numerically show conditions under which the outputs of the two lasers can be highly correlated with each other even though the correlation with the drive signal is low. In particular, the effects of the phase of the feedback light on the correlation characteristics are described.
View Article and Find Full Text PDFWe experimentally and numerically observe synchronization of two semiconductor lasers commonly driven by a chaotic semiconductor laser subject to optical feedback. Under condition that the relaxation oscillation frequency is matched between the two response lasers, but mismatched between the drive and the two response lasers, we show that it is possible to observe strongly correlated synchronization between the two response lasers even when the correlation between the drive and response lasers is low. We also show that the cross correlation between the two responses is larger than that between drive and responses over a wide parameter region.
View Article and Find Full Text PDF