Publications by authors named "Isao Matsuura"

Objective: Autoimmune retinopathy and hydroxychloroquine (HCQ)-related retinal toxicity share many similarities, raising the possibility autoimmunity plays a role in HCQ retinopathy. The objective of this study is to determine whether patients diagnosed with HCQ retinal toxicity are more likely to have circulating antiretinal autoantibodies (AAbs) compared to controls.

Methods: We tested plasma samples for the presence of anti-retinal AAbs by immunoblotting in 270 patients with systemic lupus erythematosus (SLE) receiving HCQ.

View Article and Find Full Text PDF

Hepatitis B virus (HBV) is a major cause of hepatocellular carcinoma (HCC). Previous studies have identified recurrent nonsense mutations in the HBV large S (LHBs) gene from the liver from HBV core antigen-positive HCC patients. These nonsense mutants have been shown to be oncogenic in mouse xenograft models using a mouse embryonic fibroblast cell line.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is often aggressive and metastatic. Transforming growth factor-β acts as a tumor-promoter in TNBC. Smad3, a major downstream effector protein in the TGF-β signaling pathway, is regulated by phosphorylation at several sites.

View Article and Find Full Text PDF

Previous studies based on cell culture and xenograft animal models suggest that Smad3 has tumor suppressor function for breast cancer during early stages of tumorigenesis. In this report, we show that DMBA (7,12-dimethylbenz[a]anthracene), a chemical carcinogen, induces mammary tumor formation at a significantly higher frequency in the Smad3 heterozygous mice than in the Smad3 wild type mice. This is the first genetic evidence showing that Smad3 inhibits mammary tumor formation in a mouse model.

View Article and Find Full Text PDF

Smad proteins transduce the TGF-ß family signal at the cell surface into gene regulation in the nucleus. In addition to being phosphorylated by the TGF-ß family receptors, Smads are phosphorylated by a variety of intracellular kinases. The most studied are by cyclin-dependent kinases, the MAP kinase family members, and GSK-3.

View Article and Find Full Text PDF

The nonsense mutations of the hepatitis B virus (HBV) surface (S) gene have been reported to have oncogenic potential. We have previously identified several transforming nonsense mutations of the HBV S gene from hepatocarcinoma (HCC) patients. Among them, the sW182* mutant (the stop codon for tryptophan 182) showed the most potent oncogenicity in a mouse xenograft model using stably transfected mouse fibroblast cells.

View Article and Find Full Text PDF

Background & Aims: The correlation between chronic hepatitis B virus (HBV) infection and hepatocellular carcinoma (HCC) has been well-established. But the roles of viral factor remain uncertain. Only HBV X gene and nonsense mutations of S gene (C-terminal truncation of HBV surface protein) have been demonstrated to have transforming activity.

View Article and Find Full Text PDF

Recent studies have suggested a possible involvement of abnormal tau in some retinal degenerative diseases. The common view in these studies is that these retinal diseases share the mechanism of tau-mediated degenerative diseases in brain and that information about these brain diseases may be directly applied to explain these retinal diseases. Here we collectively examine this view by revealing three basic characteristics of tau in the rod outer segment (ROS) of bovine retinal photoreceptors, i.

View Article and Find Full Text PDF

Retinal photoreceptor phosphodiesterase (PDE6), a key enzyme for phototransduction, consists of a catalytic subunit complex (Pαβ) and two inhibitory subunits (Pγs). Pαβ has two noncatalytic cGMP-binding sites. Here, using bovine PDE preparations, we show the role of these cGMP-binding sites in PDE regulation.

View Article and Find Full Text PDF

Cardiovascular effects have often been found in 2-chloroethanol (2-CE) intoxicated patients, but the 2-CE elicits cardiovascular toxicity mechanism is not clear. Recently, we have found that chloroacetaldehyde (CAA) accumulation in 2-CE-intoxicated rat's blood and play an important role in 2-CE intoxication. In this study, we used an isolated rat atrium model to examine the cardiotoxicity of 2-CE and CAA.

View Article and Find Full Text PDF

Rod photoreceptor cGMP phosphodiesterase (PDE6) consists of a catalytic subunit complex (Palphabeta) and two inhibitory subunits (Pgamma). In the accompanying article, using bovine photoreceptor outer segment homogenates, we show that Pgamma as a complex with the GTP-bound transducin alpha subunit (GTP-Talpha) dissociates from Palphabetagammagamma on membranes, and the Palphabetagammagamma becomes Pgamma-depleted. Here, we identify and characterize the Pgamma-depleted PDE.

View Article and Find Full Text PDF

Cyclic GMP phosphodiesterase (PDE) in bovine rod photoreceptor outer segments (OS) comprises a catalytic subunit complex (Palphabeta) and two inhibitory subunits (Pgamma) and is regulated by the alpha subunit of transducin (Talpha). Here, we show an overall mechanism for PDE regulation by identifying Pgamma complexes in OS homogenates prepared with an isotonic buffer. Before Talpha activation, three Pgamma complexes exist in the soluble fraction.

View Article and Find Full Text PDF

TGF-beta (transforming growth factor-beta) induces a cytostatic response in most normal cell types. In cancer cells, however, it often promotes metastasis, and its high expression is correlated with poor prognosis. In the present study, we show that S100A4, a metastasis-associated protein, also called metastatin-1, can physically and functionally interact with Smad3, an important mediator of TGF-beta signalling.

View Article and Find Full Text PDF

Transforming growth factor-beta (TGF-beta) regulates a wide variety of biological activities. It induces potent growth-inhibitory responses in normal cells but promotes migration and invasion of cancer cells. Smads mediate the TGF-beta responses.

View Article and Find Full Text PDF

Primary cutaneous amyloidosis (PCA) is an itchy skin disorder associated with amyloid deposits in the superficial dermis. The disease is relatively common in Southeast Asia and South America. Autosomal dominant PCA has been mapped earlier to 5p13.

View Article and Find Full Text PDF

The peptidyl-prolyl isomerase Pin1 is frequently up-regulated in human cancers in which Rel/nuclear factor-kappaB (NF-kappaB) is constitutively activated, but its role in these cancers remains to be determined, and evidence is still lacking to show that Pin1 contributes to cell transformation by Rel/NF-kappaB. Rel/NF-kappaB transcriptional and oncogenic activities are modulated by several posttranslational modifications and coregulatory proteins, and previous studies showed that cytokine treatment induces binding of Pin1 to the RelA subunit of NF-kappaB, thereby enhancing RelA nuclear localization and stability. Here we show that Pin1 associates with the Rel subunits of NF-kappaB that are implicated in leukemia/lymphomagenesis and modulates their transcriptional and oncogenic activities.

View Article and Find Full Text PDF

Smad proteins transduce the transforming growth factor-beta (TGF-beta) signal at the cell surface into gene regulation in the nucleus. Upon TGF-beta treatment, the highly homologous Smad2 and Smad3 are phosphorylated by the TGF-beta receptor at the SSXS motif in the C-terminal tail. Here we show that in addition to the C-tail, three (S/T)-P sites in the Smad3 linker region, Ser(208), Ser(204), and Thr(179) are phosphorylated in response to TGF-beta.

View Article and Find Full Text PDF

Smad3 is phosphorylated by ERK MAP kinase upon EGF treatment. We have mapped the ERK phosphorylation sites to Ser 207, Ser 203, and Thr 178 in Smad3. We show that, upon EGF treatment, Smad3 is rapidly phosphorylated in these sites, peaking at approximately 15-30 min and that MEK1 inhibitors PD98059 and U0216 inhibit Smad3 phosphorylation induced by EGF.

View Article and Find Full Text PDF

Rb family members were the only demonstrated substrates of CDK4 until it was shown recently that Smad3, which plays a key role in mediating TGF-beta antiproliferative responses, is phosphorylated by both CDK4 and CDK2 in vivo and in vitro. CDK phosphorylation of Smad3 inhibits its transcriptional activity and antiproliferative function. The Rb pathway is disrupted in almost all human cancers.

View Article and Find Full Text PDF

Transforming growth factor-beta (TGF-beta)/Smads regulate a wide variety of biological responses through transcriptional regulation of target genes. Smad3 plays a key role in TGF-beta/Smad-mediated transcriptional responses. Here, we show that the proline-rich linker region of Smad3 contains a transcriptional activation domain.

View Article and Find Full Text PDF

Transforming growth factor-beta (TGF-beta) potently inhibits cell cycle progression at the G1 phase. Smad3 has a key function in mediating the TGF-beta growth-inhibitory response. Here we show that Smad3 is a major physiological substrate of the G1 cyclin-dependent kinases CDK4 and CDK2.

View Article and Find Full Text PDF

Smad proteins play pivotal roles in mediating the transforming growth factor beta (TGF-beta) transcriptional responses. We show in this report that PIAS3, a member of the protein inhibitor of activated STAT (PIAS) family, activates TGF-beta/Smad transcriptional responses. PIAS3 interacts with Smad proteins, most strongly with Smad3.

View Article and Find Full Text PDF

Smad proteins mediate transforming growth factor beta (TGF-beta)-inducible transcriptional responses. Protein inhibitor of activated signal transducer and activator of transcription (PIAS) represents a family of proteins that inhibits signal transducer and activator of transcription and also regulates other transcriptional responses. In an effort to identify Smad-interacting proteins by a yeast three-hybrid screen with Smad3 and Smad4 as baits, we identified PIASy, a member of the PIAS family.

View Article and Find Full Text PDF

It has been believed that retinal guanylyl cyclase (retGC), a key enzyme in the cGMP recovery to the dark state, is solely activated by guanylyl cyclase-activating proteins (GCAPs) in a Ca2+-sensitive manner. However, a question has arisen as to whether the observed GCAP stimulation of retGC is sufficient to account for the cGMP recovery because the stimulated activity measured in vitro is less than the light/GTP-activated cGMP phosphodiesterase activity. Here we report that the retGC activation by GCAPs is larger than previously reported and that a preincubation with adenine nucleotide is essential for the large activation.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session6bfpiekbqiemnhdmt1hs5fa8p259dt65): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once