Publications by authors named "Isao Matsui-Yuasa"

The nucleic acids found in food play a crucial role in maintaining various bodily functions. This study investigated the potential anticancer effects of dietary nucleic acids, an area that is still not fully understood. By utilizing an in vivo mouse model and an in vitro cell model, we discovered an anti-proliferative impact of RNA in both systems.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a degenerative neurological disorder defined by the deterioration and loss of dopamine-producing neurons in the substantia nigra, leading to a range of motor impairments and non-motor symptoms. The underlying mechanism of this neurodegeneration remains unclear. This research examined the neuroprotective properties of polyphenols (ECPs) in mitigating neuronal damage induced by rotenone via the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway.

View Article and Find Full Text PDF

Obesity is a major risk factor for various chronic diseases, especially lifestyle-related diseases. Therefore, finding a protective substance against obesity and elucidating its molecular mechanism is one of the most important problems for improving human health. In this study, we investigated the antiobesity effect of extract (MFE).

View Article and Find Full Text PDF

L. shows anti-cancer effects; however, the underling mechanism remains unclear. In this study, we explored the underlying mechanism of the anti-cancer effects of L.

View Article and Find Full Text PDF

Excessive alcohol use often results in alcoholic liver disease (ALD). An early change in the liver due to excessive drinking is hepatic steatosis, which may ultimately progress to hepatitis, liver fibrosis, cirrhosis, and liver cancer. Among these debilitating processes, hepatic steatosis is reversible with the appropriate treatment.

View Article and Find Full Text PDF

We studied the epigenetic regulation of how black carrot extract (BCE) protects against ethanol-induced hepatic damage. We have shown that the butanol-extracted fraction of BCE (BCE-BuOH) increased intracellular cyclic adenosine monophosphate (cAMP) levels by suppressing the expression of phosphodiesterase 4b (PDE4b); however, the detailed mechanism remains to be elucidated. We focused on changes in histone modifications involved in the suppression of pde4 expression.

View Article and Find Full Text PDF

Obesity is a major risk factor for various chronic diseases such as diabetes, cardiovascular disease, and cancer; hence, there is an urgent need for an effective strategy to prevent this disorder. Currently, the anti-obesity effects of food ingredients are drawing attention. Therefore, we focused on carob, which has high antioxidant capacity and various physiological effects, and examined its anti-obesity effect.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a neurodegenerative disease caused by the degeneration of substantia nigra neurons due to oxidative stress. Sesaminol has strong antioxidant and anti-cancer effects. We investigated the preventive effect on PD as a new physiological action of sesaminol produced from sesaminol glycoside using and PD models.

View Article and Find Full Text PDF

The protective effects of extract (MF) on liver fibrosis induced with ethanol were examined using in vivo and in vitro model. MF treatment suppressed plasma alanine aminotransferase and aspartate aminotransferase activities in ethanol plus carbon tetrachloride (CCl)-induced cirrhosis rat model. MF also suppressed the increase in type l collagen and α-smooth muscle actin expression in the livers of ethanol plus CCl4-induced rat by the maintenance of intracellular glutathione levels.

View Article and Find Full Text PDF

1'-Acetoxychavicol acetate (ACA) is found in the rhizomes or seeds of and , which are used as traditional spices in cooking and traditional medicines in Southeast Asia. ACA possesses numerous medicinal properties. Those include anticancer, antiobesity, antiallergy, antimicrobial, antidiabetic, gastroprotective, and anti-inflammatory activities.

View Article and Find Full Text PDF

Protein degradation systems are critical pathways for the maintenance of protein homeostasis. The age-dependent attenuation of the proteasome activity contributes to age-related neurodegenerative processes. The molecule 1'-acetoxychavicol acetate (ACA) is naturally obtained from the rhizomes and seeds of Zingiberaceae plants, such as and , and exhibits anti-carcinogenic effects.

View Article and Find Full Text PDF

Dietary nucleotides play a role in maintaining the immune responses of both animals and humans. Oral administration of nucleic acids from salmon milt have physiological functions in the cellular metabolism, proliferation, differentiation, and apoptosis of human small intestinal epithelial cells. In this study, we examined the effects of DNA-rich nucleic acids prepared from salmon milt (DNSM) on the development of liver fibrosis in an in vivo ethanol-carbon tetrachloride cirrhosis model.

View Article and Find Full Text PDF

1'-Acetoxychavicol acetate (ACA) is naturally obtained from the rhizomes and seeds of Alpinia galangal. Here, we examined the effect of ACA on learning and memory in senescence-accelerated mice prone 8 (SAMP8). In mice that were fed a control diet containing 0.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is highly resistant to currently available chemotherapeutic agents. The clinical outcome of HCC treatment remains unsatisfactory. Therefore, new effective and well-tolerated therapy strategies are needed.

View Article and Find Full Text PDF

Previously, we showed that Ecklonia cava polyphenol (ECP) treatment suppressed ethanol-induced increases in hepatocyte death by scavenging intracellular reactive oxygen species (ROS) and maintaining intracellular glutathione levels. Here, we examined the effects of ECP on the activities of alcohol-metabolizing enzymes and their regulating mechanisms in ethanol-treated hepatocytes. Isolated hepatocytes were incubated with or without 100 mM ethanol.

View Article and Find Full Text PDF

It has been suggested that the combined effect of natural products may improve the effect of treatment against the proliferation of cancer cells. In this study, we evaluated the combination of 1'-acetoxychavicol acetate (ACA), obtained from Alpinia galangal, and sodium butyrate, a major short chain fatty acid, on the growth of HepG2 human hepatocellular carcinoma cells and found that treatment had a synergistic inhibitory effect. The number of HepG2 cells was synergistically decreased via apoptosis induction when cells were treated with both ACA and sodium butyrate.

View Article and Find Full Text PDF

Scope: Phase II enzymes play important roles in detoxifying xenobiotics. We previously reported that both 1'-acetoxychavicol acetate (ACA) and sodium butyrate individually increased phase II enzyme activities. Here, we determined the combined action of ACA and sodium butyrate on phase II enzyme activities in intestinal epithelial cells (IEC 6).

View Article and Find Full Text PDF

1,5-Anhydro-D-fructose (1,5-AF) is a monosaccharide that shares a structural similarity to glucose. 1,5-AF is found in fungi, algae, Escherichia coli and rat liver and is produced by the degradation of starch and glycogen, which is catalyzed by the enzyme alpha-1,4-glucan lyase. However, the physiological role of 1,5-AF in mammalian tissues is not well understood.

View Article and Find Full Text PDF

Alpinia galanga and Languas galanga, which are plants belonging to the ginger family, are frequently used for cooking, especially in Thai and Indonesian cuisine. The compound 1'-acetoxychavicol acetate (ACA), which is naturally obtained from the rhizomes and seeds of these gingers, has antioxidant and anti-inflammatory properties. We investigated the anti-obesity effects of ACA in 3T3-L1 adipocytes and in high fat diet (HFD)-induced rat models of obesity.

View Article and Find Full Text PDF

Dietary fiber fermentation by the colonic bacterial flora produces short-chain fatty acids, acetate, propionate and butyrate. Among them, butyrate is considered to be the major energy substrate for colonocytes and, at least in rats, seems to protect against colonic carcinogenesis. In this study, we examined the effect and the mechanisms of short-chain fatty acids on the activity of phase 2 enzymes.

View Article and Find Full Text PDF

Background: The development of alcoholic liver disease is a complex process that involves both the parenchymal and non-parenchymal cells of the liver. We examined the effect of an Ecklonia cava extract on ethanol-induced liver injury.

Methods: Isolated hepatocytes and hepatic stellate cells (HSCs) were incubated with ethanol.

View Article and Find Full Text PDF

Nonalcoholic steatohepatitis (NASH) is a disease closely associated with obesity and diabetes. A prevalence of type 2 diabetes and a high body mass index in cryptogenic cirrhosis may imply that obesity leads to cirrhosis. Here, we examined the effects of an extract of Ecklonia cava, a brown algae, on the activation of high glucose-induced hepatic stellate cells (HSCs), key players in hepatic fibrosis.

View Article and Find Full Text PDF

(1'S)-acetoxychavicol acetate ((S)-ACA) exhibits chemopreventive effects on chemically induced tumor formation. It has been shown that ACA inhibited the development of azoxymethane-induced colon carcinogenesis through its suppression of cell proliferation in the colonic mucosa and its induction of glutathione S-transferase and quinone oxidoreductase 1 in vivo. In this study, we investigated how ACA induced these enzymes by using rat intestine epithelial cells (IEC6) in vitro.

View Article and Find Full Text PDF

1'-Acetoxychavicol acetate (ACA), isolated from the rhizomes and the seeds of the Zingiberaceae plant, has a variety of biological activities such as antitumor, antiallergic and repellent effects. However, ACA seems to have some disadvantages which may limit for future possible clinical applications, for example, its poor water solubility. Furthermore, ACA is not stable in aqueous solutions and undergoes hydrolysis and/or isomerization.

View Article and Find Full Text PDF