Publications by authors named "Isamu Z Hartman"

HLA-DM is now known to have a major contribution to the selection of immunodominant epitopes. A better understanding of the mechanisms controlling epitope selection can be achieved by examination of the biophysical behavior of MHC class II molecules upon binding of antigenic peptides and of the effect of DM on the interactions. Using purified soluble molecules, in this chapter we describe several in vitro methods for measuring peptide binding to HLA-DR molecules and the effects of HLA-DM on this interaction.

View Article and Find Full Text PDF

Accumulation of sterols in endoplasmic reticulum membranes stimulates the ubiquitination of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), which catalyzes a rate-limiting step in synthesis of cholesterol. This ubiquitination marks HMGCR for proteasome-mediated degradation and constitutes one of several mechanisms for feedback control of cholesterol synthesis. Mechanisms for sterol-accelerated ubiquitination and degradation of HMGCR have been elucidated through the study of cultured mammalian cells.

View Article and Find Full Text PDF

Immunodominant epitopes are few selected epitopes from complex antigens that initiate T-cell responses. Here to provide further insights into this process, we use a reductionist cell-free antigen-processing system composed of defined components. We use the system to characterize steps in antigen processing of pathogen-derived proteins or autoantigens and we find distinct paths for peptide processing and selection.

View Article and Find Full Text PDF

Accelerated endoplasmic reticulum (ER)-associated degradation (ERAD) of the cholesterol biosynthetic enzyme 3-hydroxy-3-methylglutaryl-coenzyme A reductase results from its sterol-induced binding to ER membrane proteins called Insig-1 and Insig-2. This binding allows for subsequent ubiquitination of reductase by Insig-associated ubiquitin ligases. Once ubiquitinated, reductase becomes dislocated from ER membranes into the cytosol for degradation by 26 S proteasomes through poorly defined reactions mediated by the AAA-ATPase valosin-containing protein (VCP)/p97 and augmented by the nonsterol isoprenoid geranylgeraniol.

View Article and Find Full Text PDF

Processing of antigens for presentation to helper T cells by MHC class II involves HLA-DM (DM) and HLA-DO (DO) accessory molecules. A mechanistic understanding of DO in this process has been missing. The leading model on its function proposes that DO inhibits the effects of DM.

View Article and Find Full Text PDF

Sterol-induced binding to Insigs in endoplasmic reticulum (ER) membranes triggers ubiquitination of the cholesterol biosynthetic enzyme 3-hydroxy-3-methylglutaryl CoA reductase. This ubiquitination, which is mediated by Insig-associated ubiquitin ligases gp78 and Trc8, is obligatory for extraction of reductase from lipid droplet-associated ER membranes into the cytosol for proteasome-mediated, ER-associated degradation (ERAD). In this study, we identify lipid droplet-associated, ancient, ubiquitous protein-1 (Aup1) as one of several proteins that copurify with gp78.

View Article and Find Full Text PDF

Helper T cells respond to peptide antigens derived from exogenous sources presented by MHC II on antigen presenting cells. Antigens from pathogens are internalized by professional antigen presenting cells (APC) and processed for presentation. Certain epitopes are selected during processing as the final peptides for stimulation of T cells and are termed "immunodominant".

View Article and Find Full Text PDF

Immunodominance is defined as restricted responsiveness of T cells to a few selected epitopes from complex antigens. Strategies currently used for elucidating CD4(+) T cell epitopes are inadequate. To understand the mechanism of epitope selection for helper T cells, we established a cell-free antigen processing system composed of defined proteins: human leukocyte antigen-DR1 (HLA-DR1), HLA-DM and cathepsins.

View Article and Find Full Text PDF

Sterol-induced binding to Insigs in the endoplasmic reticulum (ER) allows for ubiquitination of 3-hydroxy-3-methylglutaryl coenzyme A reductase, the rate-limiting enzyme in cholesterol synthesis. This ubiquitination marks reductase for recognition by the ATPase VCP/p97, which mediates extraction and delivery of reductase from ER membranes to cytosolic 26 S proteasomes for degradation. Here, we report that reductase becomes dislocated from ER membranes into the cytosol of sterol-treated cells.

View Article and Find Full Text PDF

T cells bearing alphabeta receptors recognize antigenic peptides bound to class I and class II glycoproteins encoded in the major histocompatibility complex (MHC). Cytotoxic and helper T cells respond respectively to peptide antigens derived from endogenous sources presented by MHC class I, and exogenous sources presented by MHC II, on antigen presenting cells. Differences in the MHC class I and class II structures and their maturation pathways have evolved to optimize antigen presentation to their respective T cells.

View Article and Find Full Text PDF

The peptide editor HLA-DM (DM) mediates exchange of peptides bound to major histocompatibility (MHC) class II molecules during antigen processing; however, the mechanism by which DM displaces peptides remains unclear. Here we generated a soluble mutant HLA-DR1 with a histidine-to-asparagine substitution at position 81 of the beta-chain (DR1betaH81N) to perturb an important hydrogen bond between MHC class II and peptide. Peptide-DR1betaH81N complexes dissociated at rates similar to the dissociation rates of DM-induced peptide-wild-type DR1, and DM did not enhance the dissociation of peptide-DR1betaH81N complexes.

View Article and Find Full Text PDF