Addressing global freshwater scarcity requires innovative technological solutions, among which desalination through thin-film composite polyamide membranes stands out. The performance of these membranes plays a vital role in desalination, necessitating advanced predictive modeling for optimization. This study harnesses machine learning (ML) algorithms, including support vector machine (SVM), neural networks (NN), linear regression (LR), and multivariate linear regression (MLR), alongside their ensemble techniques to predict and enhance average water flux (AWF) and average salt rejection (ASR) essential metrics of desalination efficiency.
View Article and Find Full Text PDFSurfactant-stabilized oil-in-water emulsions are a major environmental concern due to their severe consequences for aquatic organisms and humans. Two-dimensional materials, particularly MXenes, are widely used in various applications and could be used in designing advanced membranes. The narrow interlayer spacing and intrinsic oxidation severely limit mass diffusion and induce poor stability, respectively, of MXene-based separating layers on the membrane support, rendering it challenging to use for oil-water separation.
View Article and Find Full Text PDFEnviron Geochem Health
July 2024
Dye decolorization through biological treatment techniques has been gaining momentum as it is based on suspended and attached growth biomass in both batch and continuous modes. Hence, this review focused on the contribution of moving bed biofilm reactors (MBBR) in dye removal. MBBR have been demonstrated to be an excellent technology for pollution extraction, load shock resistance, and equipment size and energy consumption reduction.
View Article and Find Full Text PDFTreating oily wastewater streams such as produced water has a huge potential to resolve the issue of wastewater disposal and generate useful water for reuse. Among different techniques employed for oily wastewater (oil-in-water; O/W emulsion) treatment, membrane-based separation is advantageous owing to its lower energy consumption, recycling, ease of operation, and wider scope of tuning the active layer chemistry for enhanced performance. In line with the possibilities of enhancing the performance of the membranes for efficient O/W emulsion separation, the current work is designed to yield five different variants of polyaniline (PANI) active layers with special surface wettability features (superhyrophilic and underwater superoleophobic) on a ceramic alumina support.
View Article and Find Full Text PDFPredicting the efficacy of micropollutant separation through functionalized membranes is an arduous endeavor. The challenge stems from the complex interactions between the physicochemical properties of the micropollutants and the basic principles underlying membrane filtration. This study aimed to compare the effectiveness of a modest dataset on various machine learning tools (ML) tools in predicting micropollutant removal efficiency for functionalized reverse osmosis (RO) and nanofiltration (NF) membranes.
View Article and Find Full Text PDFEnviron Res
September 2024
This study assessed the efficacy of granular cylindrical periodic discontinuous batch reactors (GC-PDBRs) for produced water (PW) treatment by employing eggshell and waste activated sludge (WAS) derived Nickel (Ni) augmented biochar. The synthesized biochar was magnetized to further enhance its contribution towards achieving carbon neutrality due to carbon negative nature, Carbon dioxide (CO) sorption, and negative priming effects. The GC-PDBR1 and GC-PDBR2 process variables were optimized by the application of central composite design (CCD).
View Article and Find Full Text PDFProduced water (PW) from oil and gas exploration adversely affects aquatic life and living organisms, necessitating treatment before discharge to meet effluent permissible limits. This study first used activated sludge to pretreat PW in a sequential batch reactor (SBR). The pretreated PW then entered a 13 L photobioreactor (PBR) containing Scenedesmus obliquus microalgae culture.
View Article and Find Full Text PDFArtificial intelligence (AI) is being employed in brine mining to enhance the extraction of lithium, vital for the manufacturing of lithium-ion batteries, through improved recovery efficiencies and the reduction of energy consumption. An innovative approach was proposed combining Emotional Neural Networks (ENN) and Random Forest (RF) algorithms to elucidate the adsorption energy (AE) (kcal mol) of Li ions by utilizing crown ether (CE)-incorporated honeycomb 2D nanomaterials. The screening and feature engineering analysis of honeycomb-patterned 2D materials and individual CE were conducted through Density Functional Theory (DFT) and Gaussian 16 simulations.
View Article and Find Full Text PDFReliable modeling of oily wastewater emphasizes the paramount importance of sustainable and health-conscious wastewater management practices, which directly aligns with the Sustainable Development Goals (SDG) while also meeting the guidelines of the World Health Organization (WHO). This research explores the efficiency of utilizing polypyrrole-coated ceramic-polymeric membranes to model oily wastewater separation efficiency (SE) and permeate flux (PF) based on established experimental procedures. In this area, computational simulation still needs to be explored.
View Article and Find Full Text PDFWater scarcity threatens agriculture and food security in arid regions like Saudi Arabia. The nation produces significant quantities of municipal wastewater, which, with adequate treatment, could serve as an alternative water source for irrigation, thereby reducing reliance on fossil and non-renewable groundwater. This study assessed the appropriateness of using treated wastewater (TWW) for irrigation in a dry coastal agricultural region in Eastern Saudi Arabia and its impact on groundwater resources.
View Article and Find Full Text PDFSignificant progress has been made in designing advanced membranes; however, persistent challenges remain due to their reduced permeation rates and a propensity for substantial fouling. These factors continue to pose significant barriers to the effective utilization of membranes in the separation of oil-in-water emulsions. Metal-organic frameworks (MOFs) are considered promising materials for such applications; however, they encounter three key challenges when applied to the separation of oil from water: (a) lack of water stability; (b) difficulty in producing defect-free membranes; and (c) unresolved issue of stabilizing the MOF separating layer on the ceramic membrane (CM) support.
View Article and Find Full Text PDFIn a global context, trace element pollution assessment in complex multi-aquifer groundwater systems is important, considering the growing concerns about water resource quality and sustainability worldwide. This research addresses multiple objectives by integrating spatial, chemometric, and indexical study approaches, for assessing trace element pollution in the multi-aquifer groundwater system of the Al-Hassa Oasis, Saudi Arabia. Groundwater sampling and analysis followed standard methods.
View Article and Find Full Text PDFA comprehensive investigation utilized a column-type sequencing batch reactor (SBR) to efficiently remove nutrients throughout various phases of its operational cycle by forming granules. This study assessed the influence and mechanisms of a simultaneous nitrification and denitrification (SND) system employing a column-type sequential batch reactor (SBR). The primary focus was on elucidating the functional groups involved in nitrogen transformation and removal within the extracellular polymeric substances (EPS).
View Article and Find Full Text PDFPollution problems are increasingly becoming e a priority issue from both scientific and technological points of view. The dispersion and frequency of pollutants in the environment are on the rise, leading to the emergence have been increasing, including of a new class of contaminants that not only impact the environment but also pose risks to people's health. Therefore, developing new methods for identifying and quantifying these pollutants classified as emerging contaminants is imperative.
View Article and Find Full Text PDFIn this article, newly designed 3D porous polymers with tuned porosity were synthesized by the polycondensation of tetrakis (4-aminophenyl) methane with pyrrole to form polymer and with phenazine to form polymer. The polymerization reaction used -formaldehyde as a linker and nitric acid as a catalyst. The newly designed 3D porous polymers showed permanent porosity with a BET surface area of 575 m/g for and 389 m/g for .
View Article and Find Full Text PDFMXene is an incredibly promising two-dimensional material with immense potential to serve as a high-performing separating or barrier layer to develop advanced membranes. Despite the significant progress made in MXene membranes, two major challenges still exist: (i) effectively stacking MXene nanosheets into defect-free membranes and (ii) the high fouling tendency of MXene-based membranes. To address these issues, we employed sulfonated polydopamine (SPD), which simultaneously serves as a binding agent to promote the compact assembling of TiCT MXenes (MX) nanosheets and improves the antifouling properties of the resulting sulfonated polydopamine-functionalized MX (SPDMX) membranes.
View Article and Find Full Text PDFGiven the significance of dissolved HS, various techniques have been explored in the literature. The current review describes in detail the various membrane-based techniques, such as membrane contactors, for removing dissolved HS from various wastewater streams. Various types of hydrophobic membranes have been used, with more emphasis placed on PVDF hollow fiber membranes.
View Article and Find Full Text PDFGiven the huge significance of organic solvents in several industrial processes, the use of membranes for recovering the solvents has evolved into an industrially viable process. The current work has been focused on studying the effect of minor changes in the chemistry of the reacting monomers on the organic solvent nanofiltration/solvent resistance nanofiltration (OSN/SRNF) performance of the membranes. The two aliphatic amines with varying aliphatic chain lengths between primary and secondary amines were selected for this purpose.
View Article and Find Full Text PDFExploration and transportation of oil offshore can result in oil spills that cause a wide range of adverse environmental consequences and destroy aquatic life. Membrane technology outperformed the conventional procedures for oil emulsion separation due to its improved performance, reduced cost, removal capacity, and greater eco-friendly. In this study, a hydrophobic iron oxide-oleylamine (Fe-Ol) nanohybrid was synthesized and incorporated into polyethersulfone (PES) to prepare novel PES/Fe-Ol hydrophobic ultrafiltration (UF) mixed matrix membranes (MMMs).
View Article and Find Full Text PDFPolyvinylidene fluoride (PVDF) membrane-based systems for treating oily wastewater are prone to fouling. Herein, we introduced a novel mussel-inspired cationic amphiphilic terpolymer consisting of monomers -diallyldimethylammonium chloride (DADMAC), -diallyltetradecan-1-ammonium chloride (DTDAC), and mussel-inspired diallyldopamine hydrochloride (DADAHC) to improve the performance and characteristics of the PVDF membranes for oil-in-water emulsion separations. The cationic terpolymer, poly(DADMAC--DTDAC--DADAHC), shortened as PDDD, was synthesized in excellent yields via free radical polymerization and has good compatibility with the PVDF owing to the presence of hydrophobic long alkyl chains in DTDAC.
View Article and Find Full Text PDFFluoride and nitrate contamination of groundwater is a major environmental issue in the world's arid and semiarid regions. This issue is severe in both developed and developing countries. This study aimed at assessing the concentration levels, contamination mechanisms, toxicity, and human health risks of NO and F in the groundwater within the coastal aquifers of the eastern part of Saudi Arabia using a standard integrated approach.
View Article and Find Full Text PDF