Publications by authors named "Isakson P"

Background: The Rh blood group system is highly complex, polymorphic, and immunogenic. The presence of RHD gene variants in RhD negative pregnant women is a challenge in fetal RHD genotyping as it may influence the antenatal management of anti-D prophylaxis. The aim of this study was to determine the efficiency of a non-invasive single-exon approach in the obstetric population of Western Sweden in a 31-month follow up.

View Article and Find Full Text PDF

Antigen-specific class-switched antibodies are detected at the same time or even before IgM in serum of non-vaccinated individuals infected with SARS-CoV-2. These derive from the first wave of plasmablasts formed. Hence, the phenotype and specificity of plasmablasts can reveal information about early B-cell activation.

View Article and Find Full Text PDF

Background: RhD immunization is still the major cause of hemolytic disease of the fetus and newborn. Fetal RHD genotyping during pregnancy followed by tailored anti-D prophylaxis for pregnant RhD-negative women carrying an RHD-positive fetus to prevent RhD immunization is a well-established practice in many countries. This study aimed to validate a platform for high-throughput, non-invasive, single-exon, fetal RHD genotyping consisting of automated DNA extraction and PCR set-up, and a novel system for electronic data transfer to the real-time PCR instrument.

View Article and Find Full Text PDF

Understanding persistence and evolution of B cell clones after COVID-19 infection and vaccination is crucial for predicting responses against emerging viral variants and optimizing vaccines. Here, we collected longitudinal samples from patients with severe COVID-19 every third to seventh day during hospitalization and every third month after recovery. We profiled their antigen-specific immune cell dynamics by combining single-cell RNA-Seq, Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-Seq), and B cell receptor-Seq (BCR-Seq) with oligo-tagged antigen baits.

View Article and Find Full Text PDF

Patient-derived scaffolds (PDSs) generated from primary breast cancer tumors can be used to model the tumor microenvironment . Patient-derived scaffolds are generated by repeated detergent washing, removing all cells. Here, we analyzed the protein composition of 15 decellularized PDSs using liquid chromatography-mass spectrometry/mass spectrometry.

View Article and Find Full Text PDF

Tumor cells interact with the microenvironment that specifically supports and promotes tumor development. Key components in the tumor environment have been linked to various aggressive cancer features and can further influence the presence of subpopulations of cancer cells with specific functions, including cancer stem cells and migratory cells. To model and further understand the influence of specific microenvironments we have developed an experimental platform using cell-free patient-derived scaffolds (PDSs) from primary breast cancers infiltrated with standardized breast cancer cell lines.

View Article and Find Full Text PDF

The atypical protein kinase C isoform ι (PKCι) is upregulated, which cooperates with mutated KRAS (mu-KRAS) to promote the development of pancreatic cancers. However, the exact role of PKCι in KRAS-mediated pancreatic tumorigenesis is not fully defined. In the present study, we demonstrate that mu-KRAS upregulates and activates PKCι, accompanied by dephosphorylation of large tumor suppressor (LATS), a key member of the growth-inhibiting Hippo signaling pathway.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is a fatal malignant disease with 5-year survival rate of less than 6%. Activating mutations of () are often detected in most of PDAC patients. Although it has been known that oncogenic is the driver of pancreatic cancer initiation and development, the underlying mechanisms by which promotes PDAC remain poorly understood.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is a malignancy of myeloid progenitor cells that are blocked in differentiation. Acute promyelocytic leukemia (APL) is a rare form of AML, which generally presents with a t(15;17) translocation causing expression of the fusion protein PML-RARA. Pharmacological doses of all-trans retinoic acid (ATRA) induce granulocytic differentiation of APL cells leading to cure rates of >80% if combined with conventional chemotherapy.

View Article and Find Full Text PDF

Polymorphic variants of the FTO (fat mass and obesity) gene associate with body mass index in humans, but the underlying molecular mechanisms have not been firmly determined. FTO is linked to energy homeostasis via amino acid sensing and is thought to activate the mammalian target of rapamycin complex 1, a negative regulator of autophagy. FTO localises both to the nucleus and the cytoplasm, and in this study we identify a functional nuclear localisation signal (NLS) in the N-terminus of FTO, as well as nuclear localization information in its very C-terminus.

View Article and Find Full Text PDF

Glioblastoma Multiforme (GBM) is characterized by high cancer cell heterogeneity and the presence of a complex tumor microenvironment. Those factors are a key obstacle for the treatment of this tumor type. To model the disease in mice, the current strategy is to grow GBM cells in serum-free non-adherent condition, which maintains their tumor-initiating potential.

View Article and Find Full Text PDF

The identity of the cells that contribute to brain tumor structure and progression remains unclear. Mesenchymal stem cells (MSCs) have recently been isolated from normal mouse brain. Here, we report the infiltration of MSC-like cells into the GL261 murine glioma model.

View Article and Find Full Text PDF

Upon completion of cytokinesis, the midbody ring is transported asymmetrically into one of the two daughter cells where it becomes a midbody ring derivative that is degraded by autophagy. In this study we showed that the ubiquitin-binding autophagy receptor SQSTM1/p62 and the interacting adaptor protein WDFY3/ALFY form a complex with the ubiquitin E3 ligase TRAF6 and that these proteins, as well as NBR1, are important for efficient clearance of midbody ring derivatives by autophagy. The number of ubiquitinated midbody ring derivatives decreases in TRAF6-depleted cells and we showed that TRAF6 mediates ubiquitination of the midbody ring localized protein KIF23/MKLP1.

View Article and Find Full Text PDF

Autophagy, a highly conserved lysosomal degradation pathway, was initially characterized as a bulk degradation system induced in response to starvation. In recent years, autophagy has emerged also as a highly selective pathway, targeting various cargoes such as aggregated proteins and damaged organelles for degradation. The key factors involved in selective autophagy are autophagy receptors and adaptor proteins, which connect the cargo to the core autophagy machinery.

View Article and Find Full Text PDF

Suppression of macroautophagy, due to mutations or through processes linked to aging, results in the accumulation of cytoplasmic substrates that are normally eliminated by the pathway. This is a significant problem in long-lived cells like neurons, where pathway defects can result in the accumulation of aggregates containing ubiquitinated proteins. The p62/Ref(2)P family of proteins is involved in the autophagic clearance of cytoplasmic protein bodies or sequestosomes.

View Article and Find Full Text PDF

Treatment of acute promyelocytic leukemia (APL) with all-trans retinoic acid and/or arsenic trioxide represents a paradigm in targeted cancer therapy because these drugs cause clinical remission by affecting the stability of the fusion oncoprotein promyelocytic leukemia (PML)/retinoic acid receptor alpha (RARA). The authors of previous studies have implicated the ubiquitin-proteasome pathway as the main mechanism involved in therapy-induced PML/RARA degradation. Here we have investigated a role of autophagy, a protein degradation pathway that involves proteolysis of intracellular material within lysosomes.

View Article and Find Full Text PDF

The University of the Pacific, Arthur A. Dugoni School of Dentistry in San Francisco established a comprehensive dental care program at Laguna Honda Hospital, a public, skilled nursing facility. The program had three goals: (1) to provide dental students and residents an opportunity to provide oral health care for adults who were frail and medically compromised who could not come into the clinics, (2) to increase students' access to patients who needed removable prosthodontics, and (3) to fulfill Pacific's commitment to public service.

View Article and Find Full Text PDF

There is growing evidence that macroautophagic cargo is not limited to bulk cytosol in response to starvation and can occur selectively for substrates, including aggregated proteins. It remains unclear, however, whether starvation-induced and selective macroautophagy share identical adaptor molecules to capture their cargo. Here, we report that Alfy, a phosphatidylinositol 3-phosphate-binding protein, is central to the selective elimination of aggregated proteins.

View Article and Find Full Text PDF

Accumulation of ubiquitinated proteins in cytoplasmic and/or nuclear inclusions is a hallmark of several diseases associated with premature cell death. SQSTM1/p62 is known to bind ubiquitinated substrates and aid their aggregation and degradation by macroautophagy. We show here that p62 is required to recruit the large phosphoinositide-binding protein ALFY to cytoplasmic p62 bodies generated upon amino acid starvation or puromycin-treatment.

View Article and Find Full Text PDF

Objective: We examined preadipocyte differentiation in obese and nonobese individuals and the effect of cytokines and wingless-type MMTV (mouse mammary tumor virus) integration site family, member 3A (Wnt3a) protein on preadipocyte differentiation and phenotype.

Research Design And Methods: Abdominal subcutaneous adipose tissue biopsies were obtained from a total of 51 donors with varying BMI. After isolation of the adipose and stromalvascular cells, inflammatory cells (CD14- and CD45-positive cells) were removed by immune magnetic separation.

View Article and Find Full Text PDF

Autophagy is involved with the turnover of intracellular components and the management of stress responses. Genetic studies in mice have shown that suppression of neuronal autophagy can lead to the accumulation of protein aggregates and neurodegeneration. However, no study has shown that increasing autophagic gene expression can be beneficial to an aging nervous system.

View Article and Find Full Text PDF

Type 2 diabetes and obesity with enlarged fat cells are associated with low-grade systemic inflammation, impaired adipogenesis as well as the recruitment of inflammatory cells into the adipose tissue. Cytokines like TNFalpha and IL-6 are secreted by the inflammatory cells and have been shown to impair normal adipocyte differentiation. An important mechanism whereby these cytokines inhibit adipogenesis is by maintaining an active Wnt-signaling pathway.

View Article and Find Full Text PDF

Prolonged signalling from the growth factor receptor subunit and proto-oncogene c-erbB2 has been shown to cause epithelial-mesenchymal transition (EMT) in mammary epithelial cells. Using a system where c-erbB2 homodimer signalling can be induced in human mammary epithelial cells, we characterised the properties of c-erbB2-induced EMT. The cells resulting from this transdifferentiation showed a pronounced and stable fibroblastic phenotype with spindle-like morphology, homogeneous high expression of vimentin, N-cadherin, and integrin alpha5 as well as loss of E-cadherin and desmoplakin.

View Article and Find Full Text PDF