Background: Severe malaria is associated with impaired nitric oxide (NO) synthase (NOS)-dependent vasodilation, and reversal of this deficit improves survival in murine models. Malaria might have selected for genetic polymorphisms that increase endothelial NO signaling and now contribute to heterogeneity in vascular function among humans. One protein potentially selected for is alpha globin, which, in mouse models, interacts with endothelial NOS (eNOS) to negatively regulate NO signaling.
View Article and Find Full Text PDFAdvancing three-dimensional (3D) tissue constructs is central to creating models and engineered tissues that recapitulate biology. Materials that are permissive to cellular behaviors, including proliferation, morphogenesis of multicellular structures, and motility, will support the emergence of tissue structures. Granular hydrogels in which there is no interparticle cross-linking exhibit dynamic properties that may be permissive to such cellular behaviors.
View Article and Find Full Text PDFNitric oxide (NO) produced by endothelial nitric oxide synthase (eNOS) in the vessel wall regulates blood pressure and cardiovascular hemodynamics. In this study, we generated conditional eNOS knock out (KO) mice characterized by a duplicated/inverted exon 2 flanked with two pairs of loxP regions (eNOS); a Cre-recombinase activity induces cell-specific reactivation of eNOS, as a result of a flipping of the inverted exon 2 (eNOS). This work aimed to test the efficiency of the Cre-mediated cell-specific recombination and the resulting eNOS expression/function.
View Article and Find Full Text PDFBackground: Hypertension incidence increases with age and represents one of the most prevalent risk factors for cardiovascular disease. Clonal events in the hematopoietic system resulting from somatic mutations in driver genes are prevalent in elderly individuals who lack overt hematologic disorders. This condition is referred to as age-related clonal hematopoiesis (CH), and it is a newly recognized risk factor for cardiovascular disease.
View Article and Find Full Text PDFIn the vasculature, nitric oxide (NO) is produced in the endothelium by endothelial nitric oxide synthase (eNOS) and is critical for the regulation of blood flow and blood pressure. Blood flow may also be regulated by the formation of nitrite-derived NO catalyzed by hemoproteins under hypoxic conditions. We sought to investigate whether nitrite administration may affect tissue perfusion and systemic hemodynamics in WT and eNOS knockout mice.
View Article and Find Full Text PDFObesity is a multifactorial metabolic disorder associated with endothelial dysfunction and increased risk of cardiovascular disease. Adipose capillary adipose endothelial cells (CaECs) plays a crucial role in lipid transport and storage. Here, we investigated the mechanisms underlying CaEC-adipocyte interaction and its impact on metabolic function.
View Article and Find Full Text PDFBackground: PANX1 (pannexin 1), a ubiquitously expressed ATP release membrane channel, has been shown to play a role in inflammation, blood pressure regulation, and myocardial infarction. However, the possible role of PANX1 in cardiomyocytes in the progression of heart failure has not yet been investigated.
Method: We generated a novel mouse line with constitutive deletion of PANX1 in cardiomyocytes (Panx1).
S1P (sphingosine 1-phosphate) receptor modulator (SRM) drugs interfere with lymphocyte trafficking by downregulating lymphocyte S1P receptors. While the immunosuppressive activity of SRM drugs has proved useful in treating autoimmune diseases such as multiple sclerosis, that drug class is beset by on-target liabilities such as initial dose bradycardia. The S1P that binds to cell surface lymphocyte S1P receptors is provided by S1P transporters.
View Article and Find Full Text PDFHeme is an iron-containing prosthetic group necessary for the function of several proteins termed "hemoproteins." Erythrocytes contain most of the body's heme in the form of hemoglobin and contain high concentrations of free heme. In nonerythroid cells, where cytosolic heme concentrations are 2 to 3 orders of magnitude lower, heme plays an essential and often overlooked role in a variety of cellular processes.
View Article and Find Full Text PDFTargeted degradation regulates the activity of the transcriptional repressor Bcl6 and its ability to suppress oxidative stress and inflammation. Here, we report that abundance of endothelial Bcl6 is determined by its interaction with Golgi-localized pannexin 3 (Panx3) and that Bcl6 transcriptional activity protects against vascular oxidative stress. Consistent with data from obese, hypertensive humans, mice with an endothelial cell-specific deficiency in had spontaneous systemic hypertension without obvious changes in channel function, as assessed by Ca handling, ATP amounts, or Golgi luminal pH.
View Article and Find Full Text PDFCulturally and contextually valid measurement of psychological distress is critical, given the increasing numbers of forcibly displaced people and transnational migration. This study replicates an inductive process that elicited culturally specific expressions, understandings, and idioms of distress among Afghans to develop culturally specific measures of distress for Great Lakes Africans and Iraqis and expands this methodology to include a focus on the contexts of refugees resettled in the United States. To create the measures, we adapted Miller et al.
View Article and Find Full Text PDFJ Patient Cent Res Rev
November 2023
Purpose: A growing number of refugee groups are seeking care within the U.S. health care system for medical, psychological, and social needs.
View Article and Find Full Text PDFBackground: Atrial fibrillation (AF), the most common cardiac arrhythmia, is widely associated with inflammation, vascular dysfunction, and elevated levels of the vascular leak-inducing cytokine, vascular endothelial growth factor (VEGF). Mechanisms underlying AF are poorly understood and current treatments only manage this progressive disease, rather than arresting the underlying pathology. The authors previously identified edema-induced disruption of sodium channel (NaV1.
View Article and Find Full Text PDFEndothelial cells (ECs) adapt to the unique needs of their resident tissue and metabolic perturbations, such as obesity. We sought to understand how obesity affects EC metabolic phenotypes, specifically mitochondrial gene expression. We investigated the mesenteric and adipose endothelium because these vascular beds have distinct roles in lipid homeostasis.
View Article and Find Full Text PDFEndothelial caveolae are essential for a wide range of physiological processes and have emerged as key players in vascular biology. Our understanding of caveolar biology in endothelial cells has expanded dramatically since their discovery revealing critical roles in mechanosensation, signal transduction, eNOS regulation, lymphatic transport, and metabolic disease progression. Furthermore, caveolae are involved in the organization of membrane domains, regulation of membrane fluidity, and endocytosis which contribute to endothelial function and integrity.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
August 2023
Rodent husbandry requires careful consideration of environmental factors that may impact colony performance and subsequent physiological studies. Of note, recent reports have suggested corncob bedding may affect a broad range of organ systems. As corncob bedding may contain digestible hemicelluloses, trace sugars, and fiber, we hypothesized that corncob bedding impacts overnight fasting blood glucose and murine vascular function.
View Article and Find Full Text PDFCoronary microvascular disease (CMD) caused by obesity and diabetes is major contributor to heart failure with preserved ejection fraction; however, the mechanisms underlying CMD are not well understood. Using cardiac magnetic resonance applied to mice fed a high-fat, high-sucrose diet as a model of CMD, we elucidated the role of inducible nitric oxide synthase (iNOS) and 1400W, an iNOS antagonist, in CMD. Global iNOS deletion prevented CMD along with the associated oxidative stress and diastolic and subclinical systolic dysfunction.
View Article and Find Full Text PDFPannexin channels play fundamental roles in regulating inflammation and have been implicated in many diseases including hypertension, stroke, and neuropathic pain. Thus, the ability to pharmacologically block these channels is a vital component of several therapeutic approaches. Pharmacologic interrogation of model systems also provides a means to discover new roles for pannexins in cell physiology.
View Article and Find Full Text PDFMetabolic Syndrome (MetS) raises cardiovascular disease risk. Extracellular vesicles (EVs) have emerged as important mediators of insulin sensitivity, although few studies on vascular function exist in humans. We determined the effect of insulin on EVs in relation to vascular function.
View Article and Find Full Text PDFBackground: Panx1 (pannexin 1) forms high conductance channels that secrete ATP upon stimulation. The role of Panx1 in mediating constriction in response to direct sympathetic nerve stimulation is not known. Additionally, it is unknown how the expression level of Panx1 in smooth muscle cells (SMCs) influences α-adrenergic responses.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
December 2022
The fat mass and obesity gene (FTO) is a -methyladenosine RNA demethylase that was initially linked by Genome-wide association studies to increased rates of obesity. Subsequent studies have revealed multiple mass-independent effects of the gene, including cardiac myocyte contractility. We created a mouse with a conditional and inducible smooth muscle cell deletion of Fto (Myh11 Cre ) and did not observe any changes in mouse body mass or mitochondrial metabolism.
View Article and Find Full Text PDFResistance artery vasodilation in response to hypoxia is essential for matching tissue oxygen and demand. In hypoxia, erythrocytic hemoglobin tetramers produce nitric oxide through nitrite reduction. We hypothesized that the alpha subunit of hemoglobin expressed in endothelium also facilitates nitrite reduction proximal to smooth muscle.
View Article and Find Full Text PDFCollectrin (), an angiotensin-converting enzyme 2 homologue, is a chaperone of amino acid transporters in the kidney and endothelium. Global collectrin knockout (KO) mice have hypertension, endothelial dysfunction, exaggerated salt sensitivity, and diminished renal blood flow. This phenotype is associated with altered nitric oxide and superoxide balance and increased proximal tubule (PT) Na/H exchanger isoform 3 (NHE3) expression.
View Article and Find Full Text PDF