Selenocysteine (Sec) metabolism is crucial for cellular function and ferroptosis prevention and begins with the uptake of the Sec carrier, selenoprotein P (SELENOP). Following uptake, Sec released from SELENOP is metabolized via selenocysteine lyase (SCLY), producing selenide, a substrate for selenophosphate synthetase 2 (SEPHS2), which provides the essential selenium donor, selenophosphate (HSePO), for the biosynthesis of the Sec-tRNA. Here, we discovered an alternative pathway in Sec metabolism mediated by peroxiredoxin 6 (PRDX6), independent of SCLY.
View Article and Find Full Text PDFThis study aimed to evaluate the efficacy of a xenogeneic collagen matrix (XCM) in treating gingival recessions (GR) in a thin gingival phenotype. This double-blind, planned, controlled, split-mouth clinical trial included 30 patients with bilateral recessions, randomly assigned to a test group (extended flap + XCM) and a control group (extended flap + connective tissue graft; CTG). Root coverage at 18 months was 1.
View Article and Find Full Text PDFSelenocysteine (Sec) metabolism is crucial for cellular function and ferroptosis prevention and has traditionally been thought to begin with the uptake of the Sec carrier selenoprotein P (SELENOP). Following uptake, Sec released from SELENOP undergoes metabolisation via selenocysteine lyase (SCLY), producing selenide, a substrate used by selenophosphate synthetase 2 (SEPHS2), which provides the essential selenium donor - selenophosphate - for the biosynthesis of the selenocysteine tRNA. Here, we report the discovery of an alternative pathway mediating Sec metabolisation that is independent of SCLY and mediated by peroxiredoxin 6 (PRDX6).
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
April 2023
Cell volume regulation is an essential strategy for the maintenance of life under unfavorable osmotic conditions. Mechanisms aimed at minimizing the physiological challenges caused by environmental changes are crucial in anisosmotic environments. However, aquatic ecosystems experience multiple stressors, including variations in salinity and heavy metal pollution.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
February 2020
Physiological knowledge gained from questions focused on the challenges faced and strategies recruited by organisms in their habitats assumes fundamental importance about understanding the ability to survive when subjected to unfavorable situations. In the aquatic environment, salinity is particularly recognized as one of the main abiotic factors that affects the physiology of organisms. Although the physiological patterns and challenges imposed by each occupied environment are distinct, they tend to converge to osmotic oscillations.
View Article and Find Full Text PDF