Gastrointestinal epithelial cells respond to milk-born molecules throughout breastfeeding, influencing growth, and development. The rapid renewal of the small intestine depends on the proliferation in the crypt that drives cell fates. We used early weaning model to investigate immediate and late effects of breastfeeding on proliferation, differentiation of jejunal epithelial cells.
View Article and Find Full Text PDFThe small intestine mucosa is lined by specialized cells that form the crypt-villus axis, which expands its surface. Among the six intestinal epithelial cell types, the Paneth cell is located at the base of the crypt, and it contains numerous granules in its cytoplasm, composed of antimicrobial peptides, such as defensins and lysozyme, and growth factors, such as epidermal growth factor, transforming growth factor-α, and Wnt ligands. Together, these elements act in the defense against microorganisms, regulation of intestinal microbiota, maintenance, and regulation of stem cell identity.
View Article and Find Full Text PDFThe gastric mucosa is disturbed when breastfeeding is interrupted, and such early weaning (EW) condition permanently affects the differentiation of zymogenic cells. The aim of the study was to evaluate the immediate and long-term effects of EW on gastric cell proliferation, considering the molecular markers for cell cycle, inflammation, and metaplasia. Overall, we investigated the lifelong adaptation of gastric growth.
View Article and Find Full Text PDFNeonatal- Maternal Separation (NMS) deprives mammals from breastfeeding and maternal care, influencing growth during suckling- weaning transition. In the gastric mucosa, Mist1 (encoded by Bhlha15 gene) and moesin organize the secretory apparatus for pepsinogen C in zymogenic cells. Our current hypothesis was that NMS would change corticosterone activity through receptors (GR), which would modify molecules involved in zymogenic cell differentiation in rats.
View Article and Find Full Text PDF