The lytic function of CTL relies on the polarized release of cytotoxic granules (CG) at the immune synapse (IS) with target cells. CTL also contain CCL5 in cytoplasmic storage vesicles (CCL5V) distinct from CG, the role of which, in regulating T cell effector functions, is not understood. Using human CD8(+) T cells specific to a lung tumor-associated Ag, we show in this article that CTL release both secretory compartments into the immune synapse with autologous tumor cells.
View Article and Find Full Text PDFT-cell adhesion/costimulatory molecules and their cognate receptors on target cells play a major role in T-cell receptor (TCR)-mediated activities. Here, we compared the involvement of CD103 and LFA-1, and their respective ligands, in the maturation of the cytotoxic immune synapse (cIS) and in the activation of CTL effector functions. Our results indicate that cytotoxicity toward cancer cells and, to a lesser extent, cytokine production by specific CTL require, together with TCR engagement, the interaction of either CD103 with E-cadherin or LFA-1 with ICAM-1.
View Article and Find Full Text PDFDecreased antigenicity of cancer cells is a major problem in tumor immunology. This is often acquired by an expression defect in the TAP. However, it has been reported that certain murine Ags appear on the target cell surface upon impairment of TAP expression.
View Article and Find Full Text PDFInteraction of the integrin αE(CD103)β7 expressed on tumor-infiltrating lymphocytes (TIL) with E-cadherin on epithelial tumor cells is required to trigger polarized exocytosis of cytotoxic granules in TIL that elicit tumor cell lysis. In this study, we investigated the functional and signaling properties of CD103 and its individual contribution to T-cell-mediated cancer-cell killing. Our results indicated that the binding of CD103 on tumor-specific CTL to immobilized recombinant E-cadherin-Fc is sufficient to induce the polarization of cytolytic granules, whereas the degranulation of cytolytic granules also requires the coengagement of the T-cell receptor.
View Article and Find Full Text PDFWe have reported previously that the interaction of alpha(E)(CD103)beta(7) integrin, expressed on a CD8(+) tumor-infiltrating lymphocyte (TIL) clone but not on a peripheral blood lymphocyte (PBL) counterpart, with the epithelial marker E-cadherin on human lung tumor cells plays a crucial role in T-cell receptor-mediated cytotoxicity. We show here that both TIL and PBL clones are able to migrate toward autologous tumor cells and that chemokine receptor CCR5 is involved in this process. Adoptive transfer of the PBL clone in the cognate tumor engrafted in nonobese diabetic/severe combined immunodeficient mice and subsequent coengagement of T-cell receptor and transforming growth factor-beta1 receptor triggers CD103 expression on T-cell surface resulting in strong potentiation of antitumor lytic function.
View Article and Find Full Text PDFWe identified an antigen recognized on a human non-small-cell lung carcinoma by a cytotoxic T lymphocyte clone derived from autologous tumor-infiltrating lymphocytes. The antigenic peptide is presented by HLA-A2 and is encoded by the CALCA gene, which codes for calcitonin and for the alpha-calcitonin gene-related peptide. The peptide is derived from the carboxy-terminal region of the preprocalcitonin signal peptide and is processed independently of proteasomes and the transporter associated with antigen processing.
View Article and Find Full Text PDFNatural cytotoxicity receptors and NKG2D correspond to major activating receptors involved in triggering of tumor cell lysis by human NK cells. In this report, we investigated the expression of NKG2D ligands (NKG2DLs), MHC class I-related chain (MIC) A, MICB and UL16-binding proteins 1, 2 and 3, on a panel of human non-small-cell lung carcinoma cell lines, and we analyzed their role in tumor cell susceptibility to NK cell lysis. Although adenocarcinoma (ADC) cells expressed heterogeneous levels of NKG2DLs, they were often resistant to NK cell-mediated killing.
View Article and Find Full Text PDFWe previously characterized several tumor-specific T cell clones from PBL and tumor-infiltrating lymphocytes of a lung cancer patient with identical TCR rearrangements and similar lytic potential, but with different antitumor response. A role of the TCR inhibitory molecule CD5 to impair reactivity of peripheral T cells against the tumor was found to be involved in this process. In this report, we demonstrate that CD5 also controls the susceptibility of specific T cells to activation-induced cell death (AICD) triggered by the tumor.
View Article and Find Full Text PDFVarious T cell adhesion molecules and their cognate receptors on target cells promote T cell receptor (TCR)-mediated cell killing. In this report, we demonstrate that the interaction of epithelial cell marker E-cadherin with integrin alpha(E)(CD103)beta(7), often expressed by tumor-infiltrating lymphocytes (TILs), plays a major role in effective tumor cell lysis. Indeed, we found that although tumor-specific CD103(+) TIL-derived cytotoxic T lymphocyte (CTL) clones are able to kill E-cadherin(+)/intercellular adhesion molecule 1(-) autologous tumor cells, CD103(-) peripheral blood lymphocyte (PBL)-derived counterparts are inefficient.
View Article and Find Full Text PDFTo investigate tumor resistance to T cell lysis, a resistant variant was selected after specific cytolytic T lymphocytes (CTL) selection pressure. Although the resistant variant triggered perforin and granzyme B transcription in specific CTLs, as well as their degranulation, it exhibited a dramatic resistance to cytotoxic T cell killing. It also displayed strong morphological changes with alterations of the actin cytoskeleton.
View Article and Find Full Text PDFNK cells are able to discriminate between normal cells and cells that have lost MHC class I (MHC-I) molecule expression as a result of tumor transformation. This function is the outcome of the capacity of inhibitory NK receptors to block cytotoxicity upon interaction with their MHC-I ligands expressed on target cells. To investigate the role of human NK cells and their various receptors in the control of MHC-I-deficient tumors, we have isolated several NK cell clones from lymphocytes infiltrating an adenocarcinoma lacking beta2-microglobulin expression.
View Article and Find Full Text PDFWe have identified an antigen recognized on a large cell carcinoma of the lung by tumor-specific cytotoxic T lymphocytes (CTL). The antigenic peptide is encoded by a mutated alpha-actinin-4 gene and presented by human leukocyte antigen (HLA)-A2. Using HLA-A2-peptide tetramers, we have derived from patient peripheral blood lymphocytes (PBL) and autologous tumor infiltrating lymphocytes (TIL) several mutated alpha-actinin-4-specific T cell clones.
View Article and Find Full Text PDFWe have isolated from tumor-infiltrating lymphocytes (TIL) and PBL of a lung carcinoma patient several tumor-specific T cell clones displaying similar peptide-MHC tetramer staining and expressing a unique TCR. Although these clones elicited identical functional avidity and similar cytolytic potential, only T cell clones derived from TIL efficiently lysed autologous tumor cells. Interestingly, all of these clones expressed the same T cell surface markers except for the TCR inhibitory molecule CD5, which was expressed at much lower levels in TIL than in PBL.
View Article and Find Full Text PDFIn this study, we have investigated the mechanisms used by wild-type p53 (wtp53) to potentiate tumor cell susceptibility to CTL-mediated cell death. We report that wtp53 restoration in a human lung carcinoma cell line Institut Gustave Roussy (IGR)-Heu, displaying a mutated p53, resulted in up-regulation of Fas/CD95 receptor expression associated with an increase of tumor cell sensitivity to the autologous CTL clone, Heu127. However, when IGR-Heu cells were transfected with Fas cDNA, no potentiation to Heu127-mediated lysis was observed, indicating that induction of CD95 is not sufficient to sensitize target cells to CTL killing.
View Article and Find Full Text PDFT lymphocytes infiltrating a human lung carcinoma stimulated in vitro with autologous tumor cell line showed a TCRVbeta13.6(+) T-cell expansion. This subset was isolated using TCRVbeta-specific antibody and several T-cell clones were generated.
View Article and Find Full Text PDFWe described previously a CTL clone able to lyse the autologous carcinoma cell line IGR-Heu after specific recognition of an HLA-A2/mutated alpha-actinin-4 peptide complex. Here, we used IGR-Heu, cultured either as standard two-dimensional monolayers or as three-dimensional spheroids, to further analyze the influence of target architecture on CTL reactivity. Interestingly, we found that changes in the tumor structure from two- to three-dimensional induced a dramatic decrease in its capacity to activate autologous CTL, as measured by IFN-gamma and tumor necrosis factor-alpha secretion.
View Article and Find Full Text PDFInactivation of p53 has been implicated in many types of tumors particularly in non-small cell lung carcinoma, one of the most common cancers in which p53 mutation has been frequently identified. The aim of this study was to investigate the influence of p53 status on the regulation of tumor susceptibility to specific CTL-mediated cell death. For this purpose, we used a cytotoxic T lymphocyte clone, Heu127, able to lyse the human autologous lung carcinoma cell line, IGR-Heu, in a HLA-A2-restricted manner.
View Article and Find Full Text PDFWe have isolated several cytotoxic T lymphocyte (CTL) clones from lymphocytes infiltrating a lung carcinoma of a patient with long survival. These clones showed a CD3+, CD8+, CD4-, CD28- phenotype and expressed a T-cell receptor (TCR) encoded either by Vbeta8-Jbeta1.5 or Vbeta22-Jbeta1.
View Article and Find Full Text PDFIn the present report, we have investigated TRAIL/APO2 ligand (APO2L) expression, regulation, and function in human lung carcinoma tumor-infiltrating lymphocytes. Using a panel of non-small cell lung carcinoma cell lines, we first showed that most of them expressed TRAIL-R1/DR4, TRAIL-R2/DR5, but not TRAIL-R3/DcR1 and TRAIL-R4/DcR2, and were susceptible to APO2L/TRAIL-induced cell death. Two APO2L/TRAIL-sensitive tumor cell lines (MHC class I(+)/II(+) or I(+)/II(-)) were selected and specific CD4(+) HLA-DR- or CD8(+) HLA-A2-restricted CTL clones were respectively isolated from autologous tumor-infiltrating lymphocytes.
View Article and Find Full Text PDFWe have previously identified an antigen (Ag) recognized on a human large cell carcinoma of the lung by a tumor-specific cytotoxic T lymphocyte clone derived from autologous tumor infiltrating lymphocytes (TILs). The antigenic peptide is presented by HLA-A2 molecules and is encoded by a mutated alpha-actinin-4 (ACTN4) gene. In the present report, we have isolated two anti-alpha-actinin-4 T cell clones from the same patient TIL and from his peripheral blood lymphocytes (PBLs) by using tetramers of soluble HLA-A2 molecules loaded with the mutated peptide.
View Article and Find Full Text PDF