Publications by authors named "Isabelle V Maucher"

Nitro fatty acids (NFAs) are endogenously generated lipid mediators deriving from reactions of unsaturated electrophilic fatty acids with reactive nitrogen species. Furthermore, Mediterranean diets can be a source of NFA. These highly electrophilic fatty acids can undergo Michael addition reaction with cysteine residues, leading to post-translational modifications (PTM) of selected regulatory proteins.

View Article and Find Full Text PDF

Nitro-fatty acids (NFAs) are endogenously occurring lipid mediators exerting strong anti-inflammatory effects and acting as anti-oxidants in a number of animal models of inflammation. These NFA effects are mediated by targeting important regulatory proteins involved in inflammatory processes, such as 5-lipoxygenase, soluble epoxide hydrolase, or NF-κB. In the present study, we investigated the anti-tumorigenic effects of NFAs on colorectal cancer (CRC) cells in cell culture-based experiments and in a murine xenograft model of human CRC.

View Article and Find Full Text PDF

Aims: 5-Lipoxygenase (5-LO) is the key enzyme of leukotriene (LT) biosynthesis and is critically involved in a number of inflammatory diseases such as arthritis, gout, bronchial asthma, atherosclerosis, and cancer. Because 5-LO contains critical nucleophilic amino acids, which are sensitive to electrophilic modifications, we determined the consequences of a drug-mediated intracellular release of nitric oxide (NO) on 5-LO product formation by human granulocytes and on 5-LO-dependent pulmonary inflammation in vivo.

Results: Clinically relevant concentrations of NO-releasing nonsteroidal anti-inflammatory drugs and other agents releasing NO intracellularly suppress 5-LO product synthesis in isolated human granulocytes via direct S-nitrosylation of 5-LO at the catalytically important cysteines 416 and 418.

View Article and Find Full Text PDF

Recently, we published that nitro-fatty acids (NFA) are potent electrophilic molecules which inhibit 5-lipoxygenase (5-LO) by interacting catalytically with cysteine residues next to a substrate entry channel. The electrophilicity is derived from an intramolecular Michael acceptor moiety consisting of an electron-withdrawing group in close proximity to a double bond. The potential of the Michael acceptor moiety to interact with functionally relevant cysteines of proteins potentially renders them effective and sustained enzyme activity modulators.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiono391e5bmqp11vl8qgv6p3jaik8cktuan): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once