Publications by authors named "Isabelle Toubia"

Organic dyes-based photothermal agents (OPTAs) have received increasing attention as alternative to inorganic materials due to their higher biocompatibility and extensive diversification. Maximizing nonradiative deexcitation channels is crucial to improve the photothermal conversion efficiency (PCE) of OPTAs. This is typically achieved through individual molecular design or collective enhancement using supramolecular strategies.

View Article and Find Full Text PDF

We showcase the successful combination of photochemistry and kinetic target-guided synthesis (KTGS) for rapidly pinpointing enzyme inhibitors. KTGS is a fragment-based drug discovery (FBDD) methodology in which the biological target (BT) orchestrates the construction of its own ligand from fragments featuring complementary reactive functionalities. Notably, fragments interacting with the protein binding sites leverage their spatial proximity, facilitating a preferential reaction.

View Article and Find Full Text PDF

Coumarins still remain one of the most widely explored fluorescent dyes, with a broad spectrum of applications spanning various fields, such as molecular imaging, bioorganic chemistry, materials chemistry, or medical sciences. Their fluorescence is strongly based on a push-pull mechanism involving an electron-donating group (EDG), mainly located at the C7 or C8 positions of the dye core. Unfortunately, up to now, these positions have been very limited to hydroxyl or amino groups.

View Article and Find Full Text PDF

Phthalocyanines have been described as effective photosensitizers for photodynamic therapy and are therefore, being studied for their biomedical applications. The metalation of photosensitizers can improve their photodynamic therapy potential. Here, we focus on the biological properties of [1,4-Bis(3,6,9,12-Tetraoxatridec-1-yloxy)phthalocyaninato]zinc(II) (ZnPc(αEG)) and demonstrate its exceptional anticancer activity upon light stimulation to kill preferentially cancer cells with a start of efficiency at 10 pM.

View Article and Find Full Text PDF

Drug-targeted delivery has become a top priority in the world of medicine in order to develop more efficient therapeutic agents. This is important as a critical underlying problem in cancer therapy stems from the inability to deliver active therapeutic substances directly to tumor cells without causing collateral damage. In this work, zinc(II) phthalocyanine (ZnPc) was selected as a sensitizer and was linked to different targeting agents, which would be recognized by overexpressed proteins in cancer cells.

View Article and Find Full Text PDF

The combination of photodynamic therapy and chemotherapy is a promising strategy to enhance cancer therapeutic efficacy and reduce drug resistance. In this study two zinc(II) phthalocyanine-tin(IV) conjugates linked by a triethylene glycol chain were synthesized and characterized. In these complexes, the zinc(II) phthalocyanine was used as a potential photosensitizer for PDT and the tin complex was selected as cytostatic moiety.

View Article and Find Full Text PDF

The discovery of novel anticancer chemotherapeutics is fundamental to treat cancer more efficiently. Towards this goal, two dyads consisting of a gold porphyrin appended to organotin(iv) entities were synthesized and their physicochemical and biological properties were characterized. One dyad contains a gold porphyrin connected to a tin(iv) cation via a malonate and two phenyl ligands (AuP-SnPh), while the other contains two tin(iv) cations each chelated to one carboxylic acid group of the malonate and three phenyl ligands (AuP-SnPh).

View Article and Find Full Text PDF

Recently, gold(III) porphyrins have gained great interest as anticancer drugs not only for the stability of gold(III) but also for the functionalization of the porphyrin to allow bridging with another metal such as platinum(II). We report here, for the first time, the synthesis of three new bimetal compounds containing a gold(III) porphyrin conjugated to a platinum diamine moiety through malonate bridging to obtain enhanced cytotoxicity from both metals combined with the phototoxicity of the porphyrin. The three complexes differ in the type of diamine ligand around platinum(II): ammonia (NH), cyclohexanediamine (CyDA), and pyridylmethylamine (Py).

View Article and Find Full Text PDF