Publications by authors named "Isabelle Su"

Spiders are nature's engineers that build lightweight and high-performance web architectures often several times their size and with very few supports; however, little is known about web mechanics and geometries throughout construction, especially for three-dimensional (3D) spider webs. In this work, we investigate the structure and mechanics for a spider web at varying stages of construction. This is accomplished by imaging, modeling, and simulations throughout the web-building process to capture changes in the natural web geometry and the mechanical properties.

View Article and Find Full Text PDF

Spiders are abundantly found in nature and most ecosystems, making up more than 47 000 species. This ecological success is in part due to the exceptional mechanics of the spider web, with its strength, toughness, elasticity and robustness, which originate from its hierarchical structures all the way from sequence design to web architecture. It is a unique example in nature of high-performance material design.

View Article and Find Full Text PDF

Spider silk is a remarkable material that provides a template for upscaling molecular properties to the macroscale. In this article we review fundamental aspects of the mechanisms behind these behaviors, discuss the molecular makeup, chemical designs, and how these integrate in a complex arrangement to form webs, cocoons and other material architectures. Moreover, this review paper explores the unique ability of silk to tolerate various kinds of defects, in a way enabling this material platform to serve as one of the most resilient materials in nature.

View Article and Find Full Text PDF

Optimized for millions of years, natural materials often outperform synthetic materials due to their hierarchical structures and multifunctional abilities. They usually feature a complex architecture that consists of simple building blocks. Indeed, many natural materials such as bone, nacre, hair, and spider silk, have outstanding material properties, making them applicable to engineering applications that may require both mechanical resilience and environmental compatibility.

View Article and Find Full Text PDF