Unlike most cancers, adrenocortical carcinomas (ACCs) are more frequent in women than in men, but the underlying mechanisms of this sexual dimorphism remain elusive. Here, we show that inactivation of in the mouse adrenal cortex, recapitulating the most frequent alteration in ACC patients, is associated with sexually dimorphic tumor progression. Although female knockouts develop metastatic carcinomas at 18 months, adrenal hyperplasia regresses in male knockouts.
View Article and Find Full Text PDFCarney complex is a rare familial multineoplastic syndrome predisposing to endocrine and nonendocrine tumors due to inactivating mutations of PRKAR1A, leading to perturbations of the cAMP‒protein kinase A signaling pathway. Skin lesions are the most common manifestation of Carney complex, including lentigines, blue nevi, and cutaneous myxomas in unusual locations such as oral and genital mucosa. Unlike endocrine disorders, the pathogenesis of skin lesions remains unexplained.
View Article and Find Full Text PDFExcess glucocorticoid exposure affects emotional and cognitive brain functions. The extreme form, Cushing's syndrome, is adequately modelled in the AdKO mouse, consequential to adrenocortical hypertrophy and hypercorticosteronemia. We previously reported that the AdKO mouse brain undergoes volumetric changes that resemble closely those of Cushing's syndrome human patients, as well as changes in expression of glial related marker proteins.
View Article and Find Full Text PDFLarge-cell calcifying Sertoli cell tumors (LCCSCTs) are among the most frequent lesions occurring in male Carney complex (CNC) patients. Although they constitute a key diagnostic criterion for this rare multiple neoplasia syndrome resulting from inactivating mutations of the tumor suppressor PRKAR1A, leading to unrepressed PKA activity, LCCSCT pathogenesis and origin remain elusive. Mouse models targeting Prkar1a inactivation in all somatic populations or separately in each cell type were generated to decipher the molecular and paracrine networks involved in the induction of CNC testis lesions.
View Article and Find Full Text PDFChronic exposure to high circulating levels of glucocorticoids has detrimental effects on health, including metabolic abnormalities, as exemplified in Cushing's syndrome (CS). Magnetic resonance imaging (MRI) studies have found volumetric changes in gray and white matter of the brain in CS patients during the course of active disease, but also in remission. In order to explore this further, we performed MRI-based brain volumetric analyses in the AdKO mouse model for CS, which presents its key traits.
View Article and Find Full Text PDFSUMOylation is a highly conserved and dynamic post-translational mechanism primarily affecting nuclear programs for adapting organisms to stressful challenges. Alteration of SUMOylation cycles leads to severe developmental and homeostatic defects and malignancy, but signals coordinating SUMOylation are still unidentified. The adrenal cortex is a zonated endocrine gland that controls body homeostasis and stress response.
View Article and Find Full Text PDFAdrenal cortex steroids are essential for body homeostasis, and adrenal insufficiency is a life-threatening condition. Adrenal endocrine activity is maintained through recruitment of subcapsular progenitor cells that follow a unidirectional differentiation path from zona glomerulosa to zona fasciculata (zF). Here, we show that this unidirectionality is ensured by the histone methyltransferase EZH2.
View Article and Find Full Text PDFThe adrenocortical gland undergoes structural and functional remodelling in the fetal and postnatal periods. After birth, the fetal zone of the gland undergoes rapid involution in favor of the definitive cortex, which reaches maturity with the emergence of the zona reticularis(zR) at the adrenarche. The mechanisms underlying the adrenarche, the process leading to pre-puberty elevation of plasma androgens in higher primates, remain unknown, largely due to lack of any experimental model.
View Article and Find Full Text PDFThe adrenal cortex undergoes remodeling during fetal and postnatal life. How zona reticularis emerges in the postnatal gland to support adrenarche, a process whereby higher primates increase prepubertal androgen secretion, is unknown. Using cell-fate mapping and gene deletion studies in mice, we show that activation of PKA has no effect on the fetal cortex, while it accelerates regeneration of the adult cortex, triggers zona fasciculata differentiation that is subsequently converted into a functional reticularis-like zone, and drives hypersecretion syndromes.
View Article and Find Full Text PDFAdrenal cortex physiology relies on functional zonation, essential for production of aldosterone by outer zona glomerulosa (ZG) and glucocorticoids by inner zona fasciculata (ZF). The cortex undergoes constant cell renewal, involving recruitment of subcapsular progenitors to ZG fate and subsequent lineage conversion to ZF identity. Here we show that WNT4 is an important driver of WNT pathway activation and subsequent ZG differentiation and demonstrate that PKA activation prevents ZG differentiation through WNT4 repression and WNT pathway inhibition.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
July 2016
Adrenal cortex tumors are divided into benign forms, such as primary hyperplasias and adrenocortical adenomas (ACAs), and malignant forms or adrenocortical carcinomas (ACCs). Primary hyperplasias are rare causes of adrenocorticotropin hormone-independent hypercortisolism. ACAs are the most common type of adrenal gland tumors and they are rarely "functional," i.
View Article and Find Full Text PDFAdrenal Cortex Carcinoma (ACC) is an aggressive tumour with poor prognosis. Common alterations in patients include constitutive WNT/β-catenin signalling and overexpression of the growth factor IGF2. However, the combination of both alterations in transgenic mice is not sufficient to trigger malignant tumour progression, suggesting that other alterations are required to allow development of carcinomas.
View Article and Find Full Text PDFPrimary pigmented nodular adrenocortical disease (PPNAD), whether in the context of Carney complex (CNC) or isolated, leads to ACTH-independent Cushing's syndrome (CS). CNC and PPNAD are caused typically by inactivating mutations of PRKAR1A, a gene coding for the type 1a regulatory subunit (R1α) of cAMP-dependent protein kinase (PKA). Mice lacking Prkar1a, specifically in the adrenal cortex (AdKO) developed CS caused by bilateral adrenal hyperplasia (BAH), which is formed from the abnormal proliferation of fetal-like adrenocortical cells.
View Article and Find Full Text PDFAldose reductases (AKR1B) are widely expressed oxidoreductases whose physiological function remains elusive. Some isoforms are genuine prostaglandin F2α (PGF2α) synthases, suggesting they might influence adipose homeostasis because PGF2α inhibits adipogenesis. This was shown by Akr1b7 gene ablation in the mouse, which resulted in increased adiposity related to a lower PGF2α content in fat.
View Article and Find Full Text PDFPrimary pigmented nodular adrenocortical disease (PPNAD) is associated with inactivating mutations of the PRKAR1A tumor suppressor gene that encodes the regulatory subunit R1α of the cAMP-dependent protein kinase (PKA). In human and mouse adrenocortical cells, these mutations lead to increased PKA activity, which results in increased resistance to apoptosis that contributes to the tumorigenic process. We used in vitro and in vivo models to investigate the possibility of a crosstalk between PKA and mammalian target of rapamycin (mTOR) pathways in adrenocortical cells and its possible involvement in apoptosis resistance.
View Article and Find Full Text PDFAdrenal glands and gonads share a common primordium (AGP), but the molecular events driving differentiation are poorly understood. Here we demonstrate that the Wilms tumor suppressor WT1 is a key factor defining AGP identity by inhibiting the steroidogenic differentiation process. Indeed, ectopic expression of WT1 precludes differentiation into adrenocortical steroidogenic cells by locking them into a progenitor state.
View Article and Find Full Text PDFPrimary aldosteronism (PA) is the main cause of secondary hypertension, resulting from adrenal aldosterone-producing adenomas (APA) or bilateral hyperplasia. Here, we show that constitutive activation of WNT/β-catenin signalling is the most frequent molecular alteration found in 70% of APA. We provide evidence that decreased expression of the WNT inhibitor SFRP2 may be contributing to deregulated WNT signalling and APA development in patients.
View Article and Find Full Text PDFAdrenal cortical carcinomas (ACC) are rare but aggressive tumours associated with poor prognosis. The two most frequent alterations in ACC in patients are overexpression of the growth factor IGF2 and constitutive activation of Wnt/β-catenin signalling. Using a transgenic mouse model, we have previously shown that constitutive active β-catenin is a bona fide adrenal oncogene.
View Article and Find Full Text PDFIn the last 10 years, extensive studies showed that the cAMP pathway is deregulated in patients suffering from adrenocortical tumours, and particularly in primary pigmented nodular adrenocortical disease (PPNAD). Here we describe how evidence arising from the analysis of patients' data, mouse models and in vitro experiments, have shed light on the cAMP pathway as a central player in adrenal physiopathology. We also show how novel data generated from mouse models may point to new targets for potential therapies.
View Article and Find Full Text PDFJ Biol Chem
September 2011
In the adrenal gland, adrenocorticotropin (ACTH) acting through the cAMP protein kinase (PKA) transduction pathway is the main regulator of genes involved in glucocorticoid synthesis. The prolactin (PRL) receptor is expressed in the adrenal cortex of most mammals, but experimental proof that PRL ensures direct control on glucocorticoid synthesis in rodents remains elusive. To unravel the physiological importance of PRL in adrenocortical functions, we measured steroidogenic capacity of Prlr-deficient mice (Prlr(-/-)) and explored the influence of JAK/STAT signaling, the major PRL transduction pathway, on the steroidogenic activity of adrenocortical cell cultures.
View Article and Find Full Text PDFCarney complex (CNC) is an inherited neoplasia syndrome with endocrine overactivity. Its most frequent endocrine manifestation is primary pigmented nodular adrenocortical disease (PPNAD), a bilateral adrenocortical hyperplasia causing pituitary-independent Cushing's syndrome. Inactivating mutations in PRKAR1A, a gene encoding the type 1 alpha-regulatory subunit (R1alpha) of the cAMP-dependent protein kinase (PKA) have been found in 80% of CNC patients with Cushing's syndrome.
View Article and Find Full Text PDFAdrenocortical carcinoma is a rare but aggressive cancer with unknown aetiology. Constitutive activation of beta-catenin is the most frequent alteration in benign and malignant adrenocortical tumours in patients. Here, we show that constitutive activation of beta-catenin in the adrenal cortex of transgenic mice resulted in progressive steroidogenic and undifferentiated spindle-shaped cells hyperplasia as well as dysplasia of the cortex and medulla.
View Article and Find Full Text PDFProstaglandin F(2alpha) (PGF(2alpha)), represses ovarian steroidogenesis and initiates parturition in mammals but its impact on adrenal gland is unknown. Prostaglandins biosynthesis depends on the sequential action of upstream cyclooxygenases (COX) and terminal synthases but no PGF(2alpha) synthases (PGFS) were functionally identified in mammalian cells. In vitro, the most efficient mammalian PGFS belong to aldo-keto reductase 1B (AKR1B) family.
View Article and Find Full Text PDF