Motivated by the implementation of a SARS-Cov-2 sewer surveillance system in Chile during the COVID-19 pandemic, we propose a set of mathematical and algorithmic tools that aim to identify the location of an outbreak under uncertainty in the network structure. Given an upper bound on the number of samples we can take on any given day, our framework allows us to detect an unknown infected node by adaptively sampling different network nodes on different days. Crucially, despite the uncertainty of the network, the method allows univocal detection of the infected node, albeit at an extra cost in time.
View Article and Find Full Text PDF