Diacylglycerol kinases (DGKs) regulate the balance between diacylglycerol (DAG) and phosphatidic acid. DGKζ is highly abundant in skeletal muscle and induces fiber hypertrophy. We hypothesized that DGKζ influences functional and metabolic adaptations in skeletal muscle and whole-body fuel utilization.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
October 2017
Insulin resistance is central to the development of type 2 diabetes and related metabolic disorders. Because skeletal muscle is responsible for the majority of whole body insulin-stimulated glucose uptake, regulation of glucose metabolism in this tissue is of particular importance. Although Rho GTPases and many of their affecters influence skeletal muscle metabolism, there is a paucity of information on the protein kinase N (PKN) family of serine/threonine protein kinases.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
March 2016
Mechanisms regulating skeletal muscle growth involve a balance between the activity of serine/threonine protein kinases, including the mammalian target of rapamycin (mTOR) and 5'-AMP-activated protein kinase (AMPK). The contribution of different AMPK subunits to the regulation of cell growth size remains inadequately characterized. Using AMPKγ3 mutant-overexpressing transgenic Tg-Prkag3(225Q) and AMPKγ3-knockout (Prkag3(-/-)) mice, we investigated the requirement for the AMPKγ3 isoform in functional overload-induced muscle hypertrophy.
View Article and Find Full Text PDFBackground: Roux-en-Y gastric bypass (RYGB) surgery rapidly increases whole body insulin sensitivity, with changes in several organs including skeletal muscle. Objectives were to determine whether improvements in insulin action in skeletal muscle may occur directly at the level of the myocyte or secondarily from changes in systemic factors associated with weight loss. Myotubes were derived before and after RYGB surgery.
View Article and Find Full Text PDFA common polymorphism (R577X) in the α-actinin (ACTN) 3 gene, which leads to complete deficiency of a functional protein in skeletal muscle, could directly influence metabolism in the context of health and disease. Therefore, we tested the hypothesis that states of glucose tolerance are associated with the ACTN3 R577X genotype. We analyzed the prevalence of the ACTN3 R577X polymorphism in people with normal glucose tolerance (NGT) and type 2 diabetes (T2D) and measured muscle-specific α-actinin 2 and 3 mRNA and protein abundance in skeletal muscle biopsies.
View Article and Find Full Text PDFIntroduction: Trefoil factor family member 2 (Tff2) is a small gut peptide, mainly known for its protective and healing functions. As previously demonstrated, high-fat (HF) feeding can rapidly and specifically modulate Tff2 transcription in key tissues of mice, including the duodenum and mesenteric adipose tissue, therefore suggesting a novel role for this gene in energy balance.
Design And Methods: To explore whether and how Tff2 can influence feeding behavior and energy metabolism, Tff2 knock-out (KO) mice were challenged with HF diet for 12 weeks, hence food and energy intakes, body composition, as well as energy excretion and serum lipid and hormonal levels were analyzed.
A compromised muscle function due to aging, sarcopenia and reduced level of physical activity can lead to metabolic complications and chronic diseases. Endurance exercise counters these diseases by inducing beneficial adaptations whose molecular mechanisms remain unclear. We have investigated the transcriptomic changes following mild-intensity endurance training in skeletal muscle of elderly men.
View Article and Find Full Text PDFIn postmenopausal women, prevalence of metabolic syndrome (MS) is 40%. Aging is associated with a decline in basal metabolic rate and an alteration in tissue metabolism, leading to MS. Hormonal therapy has been shown to be effective against some of the MS-related features but its effects on sarcopenia and skeletal muscle metabolism remain unclear.
View Article and Find Full Text PDF