Publications by authors named "Isabelle Petit-Haertlein"

Dendritic cell-specific, intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) is a C-type lectin expressed specifically on dendritic cells. It is a primary site for recognition and binding of various pathogens and thus a promising therapeutic target for inhibition of pathogen entry and subsequent prevention of immune defense cell infection. We report the design and synthesis of d-mannose-based DC-SIGN antagonists bearing diaryl substituted 1,3-diaminopropanol or glycerol moieties incorporated to target the hydrophobic groove of the receptor.

View Article and Find Full Text PDF

When CnrX, the periplasmic sensor protein in the CnrYXH transmembrane signal transduction complex of Cupriavidus metallidurans CH34, binds the cognate metal ions Ni(II) or Co(II), the ECF-type sigma factor CnrH is made available in the cytoplasm for the RNA-polymerase to initiate transcription at the cnrYp and cnrCp promoters. Ni(II) or Co(II) are sensed by a metal-binding site with a N3O2S coordination sphere with octahedral geometry, where S stands for the thioether sulfur of the only methionine (Met123) residue of CnrX. The M123A-CnrX derivative has dramatically reduced signal propagation in response to metal sensing while the X-ray structure of Ni-bound M123A-CnrXs showed that the metal-binding site was not affected by the mutation.

View Article and Find Full Text PDF

Dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) and Langerin are C-type lectins of dendritic cells (DCs) that share a specificity for mannose and are involved in pathogen recognition. HIV is known to use DC-SIGN on DCs to facilitate transinfection of T-cells. Langerin, on the contrary, contributes to virus elimination; therefore, the inhibition of this latter receptor is undesired.

View Article and Find Full Text PDF

Antifreeze proteins (AFPs) inhibit ice growth at sub-zero temperatures. The prototypical type-III AFPs have been extensively studied, notably by X-ray crystallography, solid-state and solution NMR, and mutagenesis, leading to the identification of a compound ice-binding surface (IBS) composed of two adjacent ice-binding sections, each which binds to particular lattice planes of ice crystals, poisoning their growth. This surface, including many hydrophobic and some hydrophilic residues, has been extensively used to model the interaction of AFP with ice.

View Article and Find Full Text PDF

CnrX is the metal sensor and signal modulator of the three-protein transmembrane signal transduction complex CnrYXH of Cupriavidus metallidurans CH34 that is involved in the setup of cobalt and nickel resistance. We have determined the atomic structure of the soluble domain of CnrX in its Ni-bound, Co-bound, or Zn-bound form. Ni and Co ions elicit a biological response, while the Zn-bound form is inactive.

View Article and Find Full Text PDF

At the Institut Laue-Langevin, a new neutron Laue diffractometer LADI-III has been fully operational since March 2007. LADI-III is dedicated to neutron macromolecular crystallography at medium to high resolution (2.5-1.

View Article and Find Full Text PDF

The p47(phox) cytosolic factor from neutrophilic NADPH oxidase has always been resistant to crystallogenesis trials due to its modular organization leading to relative flexibility. Hydrogen/deuterium exchange coupled to mass spectrometry was used to obtain structural information on the conformational mechanism that underlies p47(phox) activation. We confirmed a relative opening of the protein with exposure of the SH3 Src loops that are known to bind p22(phox) upon activation.

View Article and Find Full Text PDF

Antifreeze proteins (AFPs) are found in different species from polar, alpine and subarctic regions, where they serve to inhibit ice-crystal growth by adsorption to ice surfaces. Recombinant North Atlantic ocean pout (Macrozoarces americanus) AFP has been used as a model protein to develop protocols for amino-acid-specific hydrogen reverse-labelling of methyl groups in leucine and valine residues using Escherichia coli high-density cell cultures supplemented with the amino-acid precursor alpha-ketoisovalerate. Here, the successful methyl protonation (methyl reverse-labelling) of leucine and valine residues in AFP is reported.

View Article and Find Full Text PDF

CzcE is a periplasmic protein from Cupriavidus metallidurans CH34 that can bind four copper atoms per dimer. We have crystallized the apo form of the protein and determined its structure at 1.85 A resolution.

View Article and Find Full Text PDF

The highly homologous type III antifreeze protein (AFP) subfamily share the capability to inhibit ice growth at subzero temperatures. Extensive studies by X-ray crystallography have been conducted, mostly on AFPs from polar fishes. Although interactions between a defined flat ice-binding surface and a particular lattice plane of an ice crystal have now been identified, the fine structural features underlying the antifreeze mechanism still remain unclear owing to the intrinsic difficulty in identifying H atoms using X-ray diffraction data alone.

View Article and Find Full Text PDF