Analogues of the clinical compound MGCD0103 (A) were designed and synthesized. These compounds inhibit recombinant human HDAC1 with IC(50) values in the sub-micromolar range. In human cancer cells growing in culture these compounds induce hyperacetylation of histones, cause expression of the tumor suppressor protein p21(WAF1/CIP1), and inhibit cellular proliferation.
View Article and Find Full Text PDFThe design, synthesis, and biological evaluation of N-(2-aminophenyl)-4-[(4-pyridin-3-ylpyrimidin-2-ylamino)methyl]benzamide 8 (MGCD0103) is described. Compound 8 is an isotype-selective small molecule histone deacetylase (HDAC) inhibitor that selectively inhibits HDACs 1-3 and 11 at submicromolar concentrations in vitro. 8 blocks cancer cell proliferation and induces histone acetylation, p21 (cip/waf1) protein expression, cell-cycle arrest, and apoptosis.
View Article and Find Full Text PDFThe synthesis and biological evaluation of a variety of 4-(heteroarylaminomethyl)-N-(2-aminophenyl)-benzamides and their analogs is described. Some of these compounds were shown to inhibit HDAC1 with IC(50) values below the micromolar range, induce hyperacetylation of histones, upregulate expression of the tumor suppressor p21(WAF1/Cip1), and inhibit proliferation of human cancer cells. In addition, certain compounds of this class were active in several human tumor xenograft models in vivo.
View Article and Find Full Text PDFInhibition of histone deacetylases (HDAC) is emerging as a new strategy in human cancer therapy. The synthesis and biological evaluation of a variety of 4-(heteroarylaminomethyl)-N-(2-aminophenyl)-benzamides is presented herein. From the different series bearing a six-membered heteroaromatic ring studied, the s-triazine series showed the best HDAC1 enzyme and in vitro anti-proliferative activities with IC(50) values below micromolar range.
View Article and Find Full Text PDFA variety of N-(2-amino-phenyl)-4-(heteroarylmethyl)-benzamides were designed and synthesized. These compounds were shown to inhibit recombinant human HDAC1 with IC(50) values in the sub-micromolar range. In human cancer cells growing in culture these compounds induced hyperacetylation of histones, induced the expression of the tumor suppressor protein p21(WAF1/Cip1), and inhibited cellular proliferation.
View Article and Find Full Text PDFSignificant effort is being made to understand the role of HDAC isotypes in human cancer and to develop antitumor agents with better therapeutic windows. A part of this endeavor was the exploration of the 14 A internal cavity adjacent to the enzyme catalytic site, which led to the design and synthesis of compound 4 with the unusual bis(aryl)-type pharmacophore. SAR studies around this lead resulted in optimization to potent, selective, nonhydroxamic acid HDAC inhibitors.
View Article and Find Full Text PDFInhibition of histone deacetylases (HDACs) is emerging as a new strategy in human cancer therapy. Novel 2-aminophenyl benzamides and acrylamides, that can inhibit human HDAC enzymes and induce hyperacetylation of histones in human cancer cells, have been designed and synthesized. These compounds selectively inhibit proliferation and cause cell cycle arrest in various human cancer cells but not in normal cells.
View Article and Find Full Text PDFCurr Med Chem Anticancer Agents
September 2005
Histone deacetylases (HDACs) and histone acetyltransferases (HATs) are enzymes that catalyze the deacetylation and acetylation of lysine residues located in the NH(2) terminal tails of histones and non-histone proteins. Perturbation of this balance is often observed in human cancers and inhibition of HDACs has emerged as a novel therapeutic strategy against cancer. To date, more that 30 groups, academic and industrial, are involved in research related to these target enzymes.
View Article and Find Full Text PDF