Publications by authors named "Isabelle Miederer"

Purpose: Staging of non-small cell lung cancer (NSCLC) is commonly based on [F]FDG PET/CT, in particular to exclude distant metastases and guide local therapy approaches like resection and radiotherapy. Although it is hoped that PET/CT will increase the value of primary staging compared to conventional imaging, it is generally limited to the characterization of TNM. The first aim of this study was to evaluate the PET parameter metabolic tumor volume (MTV) above liver background uptake as a prognostic marker in lung cancer.

View Article and Find Full Text PDF

Radiomics is an emerging field of artificial intelligence that focuses on the extraction and analysis of quantitative features such as intensity, shape, texture and spatial relationships from medical images. These features, often imperceptible to the human eye, can reveal complex patterns and biological insights. They can also be combined with clinical data to create predictive models using machine learning to improve disease characterization in nuclear medicine.

View Article and Find Full Text PDF

Tracer kinetic modelling based on dynamic PET is an important field of Nuclear Medicine for quantitative functional imaging. Yet, its implementation in clinical routine has been constrained by its complexity and computational costs. Machine learning poses an opportunity to improve modelling processes in terms of arterial input function prediction, the prediction of kinetic modelling parameters and model selection in both clinical and preclinical studies while reducing processing time.

View Article and Find Full Text PDF

Digitization in the healthcare sector and the support of clinical workflows with artificial intelligence (AI), including AI-supported image analysis, represent a great challenge and equally a promising perspective for preclinical and clinical nuclear medicine. In Germany, the Medical Informatics Initiative (MII) and the Network University Medicine (NUM) are of central importance for this transformation. This review article outlines these structures and highlights their future role in enabling privacy-preserving federated multi-center analyses with interoperable data structures harmonized between site-specific IT infrastructures.

View Article and Find Full Text PDF

Δ-Tetrahydrocannabinol (THC) acts as an agonist at cannabinoid receptors. Its chronic intake affects many behaviors, including cognitive processes. The aims of this study in rats are to assess the chronic effects of THC on impulsivity and on regional brain glucose uptake.

View Article and Find Full Text PDF

Increasing prescription numbers of cannabis-based medicines raise the question of whether uptake of these medicines can be distinguished from recreational cannabis use. In this pilot study, serum cannabinoid profiles after use of cannabis-based medicines were investigated, in order to identify potential distinguishing markers. Serum samples after use of Sativex, Dronabinol or medical cannabis were collected and analyzed for 18 different cannabinoids, using a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method.

View Article and Find Full Text PDF

Background: RNA-based vaccination strategies tailoring immune response to specific reactions have become an important pillar for a broad range of applications. Recently, the use of lipid-based nanoparticles opened the possibility to deliver RNA to specific sites within the body, overcoming the limitation of rapid degradation in the bloodstream. Here, we have investigated whether small animal PET/MRI can be employed to image the biodistribution of RNA-encoded protein.

View Article and Find Full Text PDF

: The endocannabinoid system is involved in several diseases such as addictive disorders, schizophrenia, post-traumatic stress disorder, and eating disorders. As often mice are used as the preferred animal model in translational research, in particular when using genetically modified mice, this study aimed to provide a systematic analysis of cannabinoid type 1 (CB1) receptor ligand-binding capacity using positron emission tomography (PET) using the ligand [F]MK-9470. We then compared the PET results with literature data from immunohistochemistry (IHC) to review the consistency between protein expression and ligand binding.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative disorder, considered a disconnection syndrome with regional molecular pattern abnormalities quantifiable by the aid of PET imaging. Solutions for accurate quantification of network dysfunction are scarce. We evaluate the extent to which PET molecular markers reflect quantifiable network metrics derived through the graph theory framework and how partial volume effects (PVE)-correction (PVEc) affects these PET-derived metrics 75 AD patients and 126 cognitively normal older subjects (CN).

View Article and Find Full Text PDF

Stringent glucose demands render the brain susceptible to disturbances in the supply of this main source of energy, and chronic stress may constitute such a disruption. However, whether stress-associated cognitive impairments may arise from disturbed glucose regulation remains unclear. Here we show that chronic social defeat (CSD) stress in adult male mice induces hyperglycemia and directly affects spatial memory performance.

View Article and Find Full Text PDF

Background: [F]Fluoro-2-deoxy-2-D-glucose positron emission tomography (FDG-PET) is commonly used in the clinic for diagnosis of cancer and for follow-up of therapy outcome. Additional to the well-established value in tumor imaging, it bears potential to depict immune processes in modern immunotherapies. T cells enhance their glucose consumption upon activation and are crucial effectors for the success of such novel therapies.

View Article and Find Full Text PDF

Purpose: The positron emission tomography ligand [ F]MK-9470 is an inverse agonist that binds reversibly and with high affinity to the cannabinoid type 1 receptor. Due to its slow brain kinetics, care is required in the definition of its dissociation rates from the receptor. The goal of this study was to investigate pharmacokinetic analysis methods using an arterial input function.

View Article and Find Full Text PDF

Purpose: Image registration is one prerequisite for the analysis of brain regions in magnetic-resonance-imaging (MRI) or positron-emission-tomography (PET) studies. Diffeomorphic anatomical registration through exponentiated Lie algebra (DARTEL) is a nonlinear, diffeomorphic algorithm for image registration and construction of image templates. The goal of this small animal study was (1) the evaluation of a MRI and calculation of several cannabinoid type 1 (CB1) receptor PET templates constructed using DARTEL and (2) the analysis of the image registration accuracy of MR and PET images to their DARTEL templates with reference to analytical and iterative PET reconstruction algorithms.

View Article and Find Full Text PDF

Unlabelled: Adolescence is characterized by drastic behavioral adaptations and comprises a particularly vulnerable period for the emergence of various psychiatric disorders. Growing evidence reveals that the pathophysiology of these disorders might derive from aberrations of normal neurodevelopmental changes in the adolescent brain. Understanding the molecular underpinnings of adolescent behavior is therefore critical for understanding the origin of psychopathology, but the molecular mechanisms that trigger adolescent behavior are unknown.

View Article and Find Full Text PDF

Purpose: Amyloid PET tracers have been developed for in vivo detection of brain fibrillar amyloid deposition in Alzheimer's disease (AD). To serve as an early biomarker in AD the amyloid PET tracers need to be analysed in multicentre clinical studies.

Methods: In this study 238 [(11)C]Pittsburgh compound-B (PIB) datasets from five different European centres were pooled.

View Article and Find Full Text PDF

Background: Cross-sectional imaging studies suggest that patterns of hypometabolism (measured by [(18)F] fluorodeoxyglucose positron emission tomography [FDG-PET]) and amyloid deposition (measured by [(11)C] Pittsburgh Compound B [PiB]- PET) in Alzheimer's disease (AD) show some overlap with each other. This indicates that neuronal dysfunction might spread within the anatomical pattern of amyloid deposition. The aim of this study was to examine longitudinal regional patterns of amyloid deposition and hypometabolism in the same population of mild AD subjects and to establish their regional relationship to each other.

View Article and Find Full Text PDF

Unlabelled: Essential tremor is the most common movement disorder, but the underlying pathophysiology is not well understood. A primary overactivity of cerebellothalamic output pathways is the most conspicuous finding, as indicated by animal and human studies. It has been argued that this overactivity may be due to impaired central inhibition, and converging evidence points toward a potential role of gamma-aminobutyric acid (GABA) dysfunction in tremor generation.

View Article and Find Full Text PDF

Inhibitors targeting the integrin alpha(v)beta(3) are promising new agents currently tested in clinical trials for supplemental therapy of glioblastoma multiforme (GBM). The aim of our study was to evaluate (18)F-labeled glycosylated Arg-Gly-Asp peptide ([(18)F]Galacto-RGD) PET for noninvasive imaging of alpha(v)beta(3) expression in patients with GBM, suggesting eligibility for this kind of additional treatment. Patients with suspected or recurrent GBM were examined with [(18)F]Galacto-RGD PET.

View Article and Find Full Text PDF

Purpose: [(11)C]Flumazenil (FMZ) is a benzodiazepine receptor antagonist that binds reversibly to central-type gamma-aminobutyric acid (GABA-A) sites. A validated approach for analysis of [(11)C]FMZ is the invasive one-tissue (1T) compartmental model. However, it would be advantageous to analyse FMZ binding with whole-brain pixel-based methods that do not require a-priori hypotheses regarding preselected regions.

View Article and Find Full Text PDF

Functional neuroimaging with magnetic resonance imaging (fMRI) or positron emission tomography (PET) provides the methodology to unravel some of the fascinating, but hitherto largely unresolved interactions between physical exercise and brain function. Phenomena such as raised mood, pain modulation, and sport addiction associated with physical exercise are highly interesting psychophysical models that require further in depth understanding at the neurotransmitter level. PET ligand displacement studies allow in vivo monitoring of endogenous transmitter trafficking in the entire brain and, thereby, to identify the link between exercise-induced behavioral measures and the endogenous neurotransmitter release.

View Article and Find Full Text PDF