Publications by authors named "Isabelle Mary"

Synechococcus cyanobacteria are ubiquitous and abundant in the marine environment and contribute to an estimated 16% of the ocean net primary productivity. Their light-harvesting complexes, called phycobilisomes (PBS), are composed of a conserved allophycocyanin core, from which radiates six to eight rods with variable phycobiliprotein and chromophore content. This variability allows Synechococcus cells to optimally exploit the wide variety of spectral niches existing in marine ecosystems.

View Article and Find Full Text PDF

Despite the growing number of investigations on microbial succession during the last decade, most of our knowledge on primary succession of bacteria in natural environments comes from conceptual models and/or studies of chronosequences. Successional patterns of litter-degrading bacteria remain poorly documented, especially in undisturbed environments. Here we conducted an experiment with tank bromeliads as natural freshwater microcosms to assess major trends in bacterial succession on two leaf-litter species incubated with or without animal exclusion.

View Article and Find Full Text PDF

To test if different niches for potential nitrifiers exist in estuarine systems, we assessed by pyrosequencing the diversity of archaeal gene transcript markers for taxonomy (16S ribosomal RNA (rRNA)) during an entire year along a salinity gradient in surface waters of the Charente estuary (Atlantic coast, France). We further investigated the potential for estuarine prokaryotes to oxidize ammonia and hydrolyze urea by quantifying thaumarchaeal amoA and ureC and bacterial amoA transcripts. Our results showed a succession of different nitrifiers from river to sea with bacterial amoA transcripts dominating in the freshwater station while archaeal transcripts were predominant in the marine station.

View Article and Find Full Text PDF
Article Synopsis
  • Deep lakes provide unique environments for studying archaeal communities due to their chemical stratification, which creates diverse ecological niches.
  • Monthly investigations over a year revealed distinct patterns in the active archaeal communities between two deep lakes, reflecting their different environmental conditions.
  • The study highlighted that not all Thaumarchaeota perform nitrification, and there is potential for uncharacterized archaeal groups to play significant roles in nutrient cycling within these lake ecosystems.
View Article and Find Full Text PDF

The search for a better understanding of why cyanobacteria often dominate phytoplankton communities in eutrophic freshwater ecosystems has led to a growing interest in the interactions between cyanobacteria and bacteria. Against this background, we studied the location of bacteria within Microcystis colonies, and compared the structural and phylogenetic diversity of Microcystis-attached and free-living bacterial communities living in the same French lake, the Villerest reservoir. Using transmission electron microscopy, we show that most of the bacteria inside the colonies were located close to detrital materials that probably resulted from lysis of Microcystis cells.

View Article and Find Full Text PDF

Marine Archaea are important players among microbial plankton and significantly contribute to biogeochemical cycles, but details regarding their community structure and long-term seasonal activity and dynamics remain largely unexplored. In this study, we monitored the interannual archaeal community composition of abundant and rare biospheres in northwestern Mediterranean Sea surface waters by pyrosequencing 16S rDNA and rRNA. A detailed analysis of the rare biosphere structure showed that the rare archaeal community was composed of three distinct fractions.

View Article and Find Full Text PDF

Thaumarchaeota have been recognized as the main drivers of aerobic ammonia oxidation in many ecosystems. However, little is known about the role of ammonia-oxidizing Archaea (AOA) and Bacteria (AOB) in lacustrine ecosystems. In this study, the photic zone of three contrasted freshwater ecosystems located in France was sampled during two periods: winter homothermy (H) and summer thermal stratification (TS), to investigate the distribution of planktonic AOA and AOB.

View Article and Find Full Text PDF

In the present study, the abundance and phylogenetic diversity of free-living and particle-associated Verrucomicrobia were investigated in a mesotrophic lake by quantitative PCR and sequencing of the 16S rRNA gene. The relative verrucomicrobial 16S rRNA gene abundance accounted for 0.02% to 1.

View Article and Find Full Text PDF

The diversity of attached and free-living Actinobacteria and Betaproteobacteria, based on 16S rRNA gene sequences, was investigated in a mesotrophic lake during two periods of contrasting phytoplankton dominance. Comparison analyses showed a phylogenetic difference between attached and free-living communities for the two bacterial groups. For Betaproteobacteria, the betaI clade was detected at all sampling dates in free-living and attached bacterial communities and was the dominant clade contributing to 57.

View Article and Find Full Text PDF

A major obstacle in the molecular investigation of natural, especially oceanic, microbial cells is their adequate preservation for further land-based molecular analyses. Here, we examined the use of microwaves for cell fixation before high-speed flow cytometric sorting to define the metaproteomes and metagenomes of key microbial populations. The microwave fixation procedure was established using cultures of Synechococcus cyanobacteria, the photosynthetic eukaryote Micromonas pusilla and the gammaproteobacterium Halomonas variabilis.

View Article and Find Full Text PDF

The marine cyanobacterium Prochlorococcus, the most abundant phototrophic organism on Earth, numerically dominates the phytoplankton in nitrogen (N)-depleted oceanic gyres. Alongside inorganic N sources such as nitrite and ammonium, natural populations of this genus also acquire organic N, specifically amino acids. Here, we investigated using isotopic tracer and flow cytometric cell sorting techniques whether amino acid uptake by Prochlorococcus is subject to a diel rhythmicity, and if so, whether this was linked to a specific cell cycle stage.

View Article and Find Full Text PDF

(35)S-Methionine and (3)H-leucine bioassay tracer experiments were conducted on two meridional transatlantic cruises to assess whether dominant planktonic microorganisms use visible sunlight to enhance uptake of these organic molecules at ambient concentrations. The two numerically dominant groups of oceanic bacterioplankton were Prochlorococcus cyanobacteria and bacteria with low nucleic acid (LNA) content, comprising 60% SAR11-related cells. The results of flow cytometric sorting of labelled bacterioplankton cells showed that when incubated in the light, Prochlorococcus and LNA bacteria increased their uptake of amino acids on average by 50% and 23%, respectively, compared with those incubated in the dark.

View Article and Find Full Text PDF

Little is known about the dynamics of dissolved phosphate in oligotrophic areas of the world's oceans, where concentrations are typically in the nanomolar range. Here, we have budgeted phosphate uptake by the dominant microbial groups in order to assess the effect of the microbial control of this depleted nutrient in the North Atlantic gyre. Low concentrations (2.

View Article and Find Full Text PDF

Cyanobacteria constitute an ancient, diverse and ecologically important bacterial group. The responses of these organisms to light and nutrient conditions are finely controlled, enabling the cells to survive a range of environmental conditions. In particular, it is important to understand how cyanobacteria acclimate to the absorption of excess excitation energy and how stress-associated transcripts accumulate following transfer of cells from low- to high-intensity light.

View Article and Find Full Text PDF

Two-component signal transduction systems, composed of histidine sensory kinases and response regulators, constitute a key element of the mechanism by which bacteria sense and acclimatize to changes in their environment. The availability of whole genome sequences permits a detailed analysis of these genes in cyanobacteria. In the present paper, we focus mainly on Prochlorococcus MED4, a strain adapted to surface oceanic conditions, for which six putative response regulators (rer) and five putative histidine kinases (hik) were identified.

View Article and Find Full Text PDF