Stress in early life can affect the progeny and increase the risk to develop psychiatric and cardiometabolic diseases across generations. The cross-generational effects of early life stress have been modeled in mice and demonstrated to be associated with epigenetic factors in the germline. While stress is known to affect gut microbial features, whether its effects can persist across life and be passed to the progeny is not well defined.
View Article and Find Full Text PDFOver 50% of children with a parent with severe mental illness will develop mental illness by early adulthood. However, intergenerational transmission of risk for mental illness in one's children is insufficiently considered in clinical practice, nor is it sufficiently utilised into diagnostics and care for children of ill parents. This leads to delays in diagnosing young offspring and missed opportunities for protective actions and resilience strengthening.
View Article and Find Full Text PDFThe possibility that acquired traits can be transmitted across generations has been the subject of intense research in the past decades. This biological process is of major interest to many scientists and has profound implications for biology and society but has complex mechanisms and is therefore challenging to study. Because it involves factors independent from the DNA sequence, this form of heredity is classically referred to as epigenetic inheritance.
View Article and Find Full Text PDFTheoretical and empirical evidence indicates that low external validity due to rigorous standardization of study populations is a cause of poor replicability in animal research. Here we report a multi-laboratory study aimed at investigating whether heterogenization of study populations by using animals from different breeding sites increases the replicability of results from single-laboratory studies. We used male C57BL/6J mice from six different breeding sites to test a standardized against a heterogenized (HET) study design in six independent replicate test laboratories.
View Article and Find Full Text PDFCurr Opin Neurobiol
February 2024
Chronic stress (CS) can have long-lasting consequences on behavior and cognition, that are associated with stable changes in gene expression in the brain. Recent work has examined the role of the epigenome in the effects of CS on the brain. This review summarizes experimental evidence in rodents showing that CS can alter the epigenome and the expression of epigenetic modifiers in brain cells, and critically assesses their functional effect on genome function.
View Article and Find Full Text PDFEpigenetic research has brought several important technological achievements, including identifying epigenetic clocks and signatures, and developing epigenetic editing. The potential military applications of such technologies we discuss are stratifying soldiers' health, exposure to trauma using epigenetic testing, information about biological clocks, confirming child soldiers' minor status using epigenetic clocks, and inducing epigenetic modifications in soldiers. These uses could become a reality.
View Article and Find Full Text PDFAlthough the role of RNA binding proteins (RBPs) in extracellular RNA (exRNA) biology is well established, their exRNA cargo and distribution across biofluids are largely unknown. To address this gap, we extend the exRNA Atlas resource by mapping exRNAs carried by extracellular RBPs (exRBPs). This map was developed through an integrative analysis of ENCODE enhanced crosslinking and immunoprecipitation (eCLIP) data (150 RBPs) and human exRNA profiles (6,930 samples).
View Article and Find Full Text PDFChromatin is the physical substrate of the genome that carries the DNA sequence and ensures its proper functions and regulation in the cell nucleus. While a lot is known about the dynamics of chromatin during programmed cellular processes such as development, the role of chromatin in experience-dependent functions remains not well defined. Accumulating evidence suggests that in brain cells, environmental stimuli can trigger long-lasting changes in chromatin structure and tri-dimensional (3D) organization that can influence future transcriptional programs.
View Article and Find Full Text PDFSertoli cells are somatic cells that are in close contact with germ cells in the mammalian testes. They have multiple functions and fulfill key roles for the development and proper maturation of spermatogenic cells into functional spermatozoa. One of their most important properties is to release trophic factors and supply nutrients to germ cells.
View Article and Find Full Text PDFEpigenetic inheritance has emerged as a new research discipline that aims to study the mechanisms underlying the transmission of acquired traits across generations. Such transmission is well established in plants and invertebrates but remains not well characterized and understood in mammals. Important questions are how life experiences and environmental factors induce phenotypic changes that are passed to the offspring of exposed individuals, sometimes across several successive generations, what is the contribution of germ cells and what are the consequences for health and disease.
View Article and Find Full Text PDFLife experiences and environmental conditions in childhood can change the physiology and behaviour of exposed individuals and, in some cases, of their offspring. In rodent models, stress/trauma, poor diet, and endocrine disruptors in a parent have been shown to cause phenotypes in the direct progeny, suggesting intergenerational inheritance. A few models also examined transmission to further offspring and suggested transgenerational inheritance, but such multigenerational inheritance is not well characterized.
View Article and Find Full Text PDFSertoli cells are somatic cells in testis essential for spermatogenesis, that support the development, maturation, and differentiation of germ cells. Sertoli cells are metabolically highly active and physiologically regulated by external signals, particularly factors in the blood stream. In disease conditions, circulating pathological signals may affect Sertoli cells and consequentially, alter germ cells and fertility.
View Article and Find Full Text PDFRecent advances in methods for single-cell analyses and barcoding strategies have led to considerable progress in research. The development of multiplexed assays offers the possibility to conduct parallel analyses of multiple factors and processes for comprehensive characterization of cellular and molecular states in health and disease. These technologies have expanded extremely rapidly in the past years and constantly evolve and provide better specificity, precision and resolution.
View Article and Find Full Text PDFNeurosci Biobehav Rev
January 2022
Childhood trauma (CT) can have persistent effects on the brain and is one of the major risk factors for neuropsychiatric diseases in adulthood. Recent advances in the field of epigenetics suggest that epigenetic factors such as DNA methylation and histone modifications, as well as regulatory processes involving non-coding RNA are associated with the long-term sequelae of CT. This narrative review summarizes current knowledge on the epigenetic basis of CT and describes studies in animal models and human subjects examining how the epigenome and transcriptome are modified by CT in the brain.
View Article and Find Full Text PDFSperm RNA can be modified by environmental factors and has been implicated in communicating signals about changes in a father's environment to the offspring. The small RNA composition of sperm could be changed during its final stage of maturation in the epididymis by extracellular vesicles (EVs) released by epididymal cells. We studied the effect of exposure to stress in early postnatal life on the transcriptome of epididymal EVs using a mouse model of transgenerational transmission.
View Article and Find Full Text PDFThe extraction of high-quality ribonucleic acid (RNA) from tissues and cells is a key step in many biological assays. Guanidinium thiocyanate-phenol-chloroform (AGPC) is a widely used and efficient method to obtain pure RNA from most tissues and cells. However, it is not efficient with some cells like sperm cells because they are resistant to chaotropic lysis solutions containing guanidinium thiocyanate such as Buffer RLT+ and Trizol.
View Article and Find Full Text PDFIntroduction: Depression, cardiovascular diseases and diabetes are among the major non-communicable diseases, leading to significant disability and mortality worldwide. These diseases may share environmental and genetic determinants associated with multimorbid patterns. Stressful early-life events are among the primary factors associated with the development of mental and physical diseases.
View Article and Find Full Text PDFProlonged periods of social isolation can have detrimental effects on the physiology and behavior of exposed individuals in humans and animal models. This involves complex molecular mechanisms across tissues in the body which remain partly identified. This review discusses the biology of social isolation and describes the acute and lasting effects of prolonged periods of social isolation with a focus on the molecular events leading to behavioral alterations.
View Article and Find Full Text PDFThe possibility that parental life experiences and environmental exposures influence mental and physical health across generations is an important concept in biology and medicine. Evidence from animal models has established the existence of a non-genetic mode of inheritance. This form of heredity involves transmission of the effects of parental exposure to the offspring through epigenetic changes in the germline.
View Article and Find Full Text PDFEnvironmental factors can change phenotypes in exposed individuals and offspring and involve the germline, likely via biological signals in the periphery that communicate with germ cells. Here, using a mouse model of paternal exposure to traumatic stress, we identify circulating factors involving peroxisome proliferator-activated receptor (PPAR) pathways in the effects of exposure to the germline. We show that exposure alters metabolic functions and pathways, particularly lipid-derived metabolites, in exposed fathers and their offspring.
View Article and Find Full Text PDFBone pathology is frequent in stressed individuals. A comprehensive examination of mechanisms linking life stress, depression and disturbed bone homeostasis is missing. In this translational study, mice exposed to early life stress (MSUS) were examined for bone microarchitecture (μCT), metabolism (qPCR/ELISA), and neuronal stress mediator expression (qPCR) and compared with a sample of depressive patients with or without early life stress by analyzing bone mineral density (BMD) (DXA) and metabolic changes in serum (osteocalcin, PINP, CTX-I).
View Article and Find Full Text PDFThe concept of epigenetic inheritance proposes a new and unconventional way to think about heredity in health and disease, at the interface between genetics and the environment. Epigenetic inheritance is a form of biological inheritance not encoded in the DNA sequence itself but mediated by epigenetic factors. Because epigenetic factors can be modulated by the environment, they can relay this information to the genome and modify its activity consequentially.
View Article and Find Full Text PDF