Plant breeding is focused on the genotype and population levels while targeting effects at higher levels of biodiversity, from crop covers to agroecosystems. Making predictions across nested levels of biodiversity is therefore a major challenge for the development of intercropping practices. New prediction tools and concepts are required to design breeding strategies with desirable outcomes at the crop community level.
View Article and Find Full Text PDFThe natural genetic diversity of agricultural species is an essential genetic resource for breeding programs aiming to improve their ecosystem and production services. A large natural ecotype diversity is usually available for most grassland species. This could be used to recombine natural climatic adaptations and agronomic value to create improved populations of grassland species adapted to future regional climates.
View Article and Find Full Text PDFThe way species avoid each other in a community by using resources differently across space and time is one of the main drivers of species coexistence in nature. This mechanism, known as niche differentiation, has been widely examined theoretically but still lacks thorough experimental validation in plants. To shape niche differences over time, species within communities can reduce the overlap between their niches or find unexploited environmental space.
View Article and Find Full Text PDFIn a context of increasing environmental challenges, there is an emerging demand for plant cultivars that are adapted to cultivation in species mixture. It is thus pressing to look for the optimization of selection schemes to grow species mixtures, and especially recurrent selection schemes which are at the core of the improvement of many plant species. We considered the case of two populations from different species to be improved by recurrent selection for their performances in mixture.
View Article and Find Full Text PDFBackground And Aims: The positive effects of species diversity on the functioning and production of ecosystems have been discussed widely in the literature. In agriculture, these effects are increasingly being applied to mixed-species crops and particularly to temporary grasslands. However, the effects of increases in genetic diversity (i.
View Article and Find Full Text PDFFunctional-structural plant models are increasingly being used to analyse relationships between plant functioning and the topological and spatial organisation of their modular structure. In this study, the performance of an individual-based model accounting for the the architecture and population dynamics of forage legumes in multi-species grasslands was assessed. Morphogenetic shoot and root parameters were calibrated for seven widely used species.
View Article and Find Full Text PDFA great variety of legume species are used for forage production and grown in multi-species grasslands. Despite their close phylogenetic relationship, they display a broad range of morphologies that markedly affect their competitive abilities and persistence in mixtures. Little is yet known about the component traits that control the deployment of plant architecture in most of these species.
View Article and Find Full Text PDFPremise Of The Study: Current ecological theory can provide insight into the causes and impacts of plant domestication. However, just how domestication has impacted intraspecific genetic variability (ITV) is unknown. We used 50 ecotypes and 35 cultivars from five grassland species to explore how selection drives functional trait coordination and genetic differentiation.
View Article and Find Full Text PDFFaced with an accelerating rate of environmental change and the associated need for a more sustainable, low-input agriculture, the urgent new challenge for crop science is to find ways to introduce greater diversity to cropping systems. However, there is a dearth of generic formalism in programs seeking to diversify crops. In this opinion, we propose a new framework, derived from ecological theory, that should enable diversity targets to be incorporated into plant-breeding programs.
View Article and Find Full Text PDFPlant species diversity regulates the productivity(1-3) and stability(2,4) of natural ecosystems, along with their resilience to disturbance(5,6). The influence of species diversity on the productivity of agronomic systems is less clear(7-10). Plant genetic diversity is also suspected to influence ecosystem function(3,11-14), although empirical evidence is scarce.
View Article and Find Full Text PDFProc Biol Sci
August 2008
Organisms ranging from bacteria and corals to plants and vertebrates can form intransitive competitive networks, in which coexistence can be maintained because no one species or genotype is superior to all others. However, in the simplest case with three competing types, the long-term outcome may not be so clear if two of the three represent the ends of a continuous heritable trait distribution within one species, as has been recently demonstrated empirically in a short-term experiment with plants. Using simulation models of this scenario, results with asexual reproduction confirm previous studies which showed that local interactions promote coexistence.
View Article and Find Full Text PDFSeasonal variations of insect population sizes are often dramatic, particularly in temperate regions and at altitudes where the climatic conditions are unfavorable to insect development during the winter. Decline of population size (or bottlenecks) and founder events may reduce the genetic variability and may create genetic differentiation between populations by drift and founder effects, but this reduction of genetic diversity is strongly influenced by gene flow between populations. In this study, we determined the population genetic structure for two stomoxyine species (Diptera: Muscidae), Stomoxys calcitrans (L.
View Article and Find Full Text PDF