Publications by authors named "Isabelle Lena"

Article Synopsis
  • Spreading depolarizations (SDs) play a role in various neurological conditions like migraines, epilepsy, and strokes, but the exact mechanisms behind them are not well understood.
  • Research shows that activating the NaV1.1 sodium channel in interneurons or stimulating GABAergic interneurons can trigger cortical spreading depression (CSD) in the neocortex, indicating a specific mechanism for CSD initiation in this brain region.
  • Gain-of-function mutations in NaV1.1 are linked to familial hemiplegic migraine type-3 (FHM3), and the study highlights the importance of GABAergic interneuron hyperactivity in initiating CSD, which may be relevant to other types of migraines and similar disorders.
View Article and Find Full Text PDF
Article Synopsis
  • * Research using heterozygous Scn2a knockout mice aims to model the behavior of individuals with these SCN2A mutations, particularly in juvenile and adolescent stages compared to adulthood.
  • * Findings show that young Scn2a mice exhibit traits similar to autism, including memory issues and low stress reactivity, but these traits lessen as they mature, revealing a need for more insight into adult patients with SCN2A mutations.
View Article and Find Full Text PDF

Endosomal acidification is critical for a wide range of processes, such as protein recycling and degradation, receptor desensitization, and neurotransmitter loading in synaptic vesicles. This acidification is described to be mediated by proton ATPases, coupled to ClC chloride transporters. Highly-conserved electroneutral protons transporters, the Na+/H+ exchangers (NHE) 6, 7 and 9 are also expressed in these compartments.

View Article and Find Full Text PDF

Vesicular H(+)-ATPases and ClC-chloride transporters are described to acidify intracellular compartments, which also express the highly conserved Na(+)/H(+) exchangers NHE6, NHE7, and NHE9. Mutations of these exchangers cause autism-spectrum disorders and neurodegeneration. NHE6, NHE7, and NHE9 are hypothesized to exchange cytosolic K(+) for H(+) and alkalinize vesicles, but this notion has remained untested in K(+) because their intracellular localization prevents functional measurements.

View Article and Find Full Text PDF

Fear-conditioned analgesia (FCA) is the reduction in pain responding which is expressed upon re-exposure to a context previously paired with an aversive stimulus. Projections along the prefrontal cortex (PFC)-amygdala-dorsal periaqueductal grey (dPAG) pathway may mediate FCA. However, there is a paucity of studies measuring both molecular and electrophysiological changes in this pathway in rats expressing persistent pain-related behaviour or FCA.

View Article and Find Full Text PDF

Myotonia is an intrinsic muscular disorder caused by muscle fibre hyperexcitability, which produces a prolonged time for relaxation after voluntary muscle contraction or internal mechanical stimulation. Missense mutations in skeletal muscle genes encoding Cl− or Na+ channels cause non-dystrophic myotonias.Mutations of the SCN4A gene that encodes the skeletal voltage-gated Na+ channel Nav1.

View Article and Find Full Text PDF

Rationale: Prenatal methylazoxymethanol (MAM) administration at gestational day 17 has been shown to induce in adult rats schizophrenia-like behaviours as well as morphological and/or functional abnormalities in structures such as the hippocampus, medial prefrontal cortex (mPFC) and nucleus accumbens (NAcc), consistent with human data.

Objectives: The aim of the present study was to further characterize the neurochemical alterations associated with this neurodevelopmental animal model of schizophrenia.

Materials And Methods: We performed simultaneous measurements of locomotor activity and extracellular concentrations of glutamate, dopamine and noradrenaline in the mPFC and the NAcc of adult rats prenatally exposed to MAM or saline after acute systemic injection of a noncompetitive NMDA antagonist, MK-801 (0.

View Article and Find Full Text PDF

A previous study has demonstrated that disruption of fear extinction-induced long-term potentiation (LTP) in the medial prefrontal cortex (mPFC) is associated with the return of fear responding. Given that immediate posttraining infusion of PD098059, an inhibitor of extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) cascade, into the mPFC also promotes recovery of fear, we investigated whether impairment of mPFC ERK/MAPK cascade also interferes with development of extinction-related LTP in the mPFC in rats. In Experiment 1, extinction training consisting of repetitive presentations of a tone previously associated with eyelid-shock application induced LTP-like changes at hippocampal inputs to the mPFC that were evident for approximately 2 h following fear extinction.

View Article and Find Full Text PDF

Noncompetitive N-methyl-D-aspartate (NMDA) antagonists such as ketamine represent useful pharmacological tools to model, in both healthy humans and rodents, behavioral and cerebral abnormalities of schizophrenia. These compounds are thought to exert some of their disruptive effects by impairing glutamatergic transmission in corticolimbic circuits including the nucleus accumbens (NAc). In this study, we investigated in freely moving rats behavioral changes as well as electrophysiological and neurochemical alterations in the NAc following acute systemic injection of a subanesthetic dose (25 mg/kg) of ketamine.

View Article and Find Full Text PDF

Opioid and tachykinin systems are involved in modulation of pain transmission in the spinal cord. Regulation of surface opioid receptors on nociceptive afferents is critical for opioid analgesia. Plasma-membrane insertion of delta-opioid receptors (DORs) is induced by stimulus-triggered exocytosis of DOR-containing large dense-core vesicles (LDCVs), but how DORs become sorted into the regulated secretory pathway is unknown.

View Article and Find Full Text PDF

Given the existence of functional interactions between opioidergic and dopaminergic systems, we have analyzed by quantitative autoradiography the possible long-term adaptive changes in the expression of D(1)- and D(2)-like dopamine receptors in the brains of mice lacking the micro-opioid receptor gene. An overall significant increase in D(1) and D(2) receptors (7.4 and 12.

View Article and Find Full Text PDF

Latent inhibition (LI) refers to the decrease in conditioned response produced by the repeated nonrein-forced preexposure to the to-be-conditioned stimulus. Experiment I investigated the effects of electrolytic lesions of the entorhinal cortex on LI in a conditioned emotional response procedure. Entorhinal cortex lesions attenuated LI.

View Article and Find Full Text PDF