Selective degradation of pathological protein aggregates while sparing monomeric forms is of major therapeutic interest. The E3 ligase tripartite motif-containing protein 21 (TRIM21) degrades antibody-bound proteins in an assembly state-specific manner due to the requirement of TRIM21 RING domain clustering for activation, yet effective targeting of intracellular assemblies remains challenging. Here, we fused the RING domain of TRIM21 to a target-specific nanobody to create intracellularly expressed constructs capable of selectively degrading assembled proteins.
View Article and Find Full Text PDFGlycogen synthase kinase 3 (GSK3) plays a pivotal role in signaling pathways involved in insulin metabolism and the pathogenesis of neurodegenerative disorders. In particular, the GSK3β isoform is implicated in Alzheimer's disease (AD) as one of the key kinases involved in the hyperphosphorylation of tau protein, one of the neuropathological hallmarks of AD. As a constitutively active serine/threonine kinase, GSK3 is inactivated by Akt/PKB-mediated phosphorylation of Ser9 in the N-terminal disordered domain, and for most of its substrates, requires priming (prephosphorylation) by another kinase that targets the substrate to a phosphate-specific pocket near the active site.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2024
Prion-like spread of disease-specific tau conformers is a hallmark of all tauopathies. A 19-residue probe peptide containing a P301L mutation and spanning the R2/R3 splice junction of tau folds and stacks into seeding-competent fibrils and induces aggregation of 4R, but not 3R tau. These tau peptide fibrils propagate aggregated intracellular tau over multiple generations, have a high β-sheet content, a colocalized lipid signal, and adopt a well-defined U-shaped fold found in 4R tauopathy brain-derived fibrils.
View Article and Find Full Text PDFPosttranslational modifications (PTMs) of proteins can be investigated by Nuclear Magnetic Resonance (NMR) spectroscopy as a powerful analytical tool to define modification sites, their relative stoichiometry, and crosstalk between modifications. As a Structural Biology method, NMR provides important additional information on changes in protein conformation and dynamics upon modification as well as a mapping of binding sites upon biomolecular interactions. Indeed, PTMs not only mediate functional modulation in protein-protein interactions, but can also induce diverse structural responses with different biological outcomes.
View Article and Find Full Text PDFThe neuronal microtubule-associated tau protein is characterized in vivo by a large number of post-translational modifications along the entire primary sequence that modulates its function. The primary modification of tau is phosphorylation of serine/threonine or tyrosine residues that is involved in the regulation of microtubule binding and polymerization. In neurodegenerative disorders referred to as tauopathies including Alzheimer's disease, tau is abnormally hyperphosphorylated and forms fibrillar inclusions in neurons progressing throughout different brain area during the course of the disease.
View Article and Find Full Text PDFTau protein was extensively studied using nuclear magnetic resonance spectroscopy, providing a powerful way to determine interaction sites between Tau and partner proteins. Here we used this analytical tool to describe the epitopes of Tau-specific VHHs (variable domain of the heavy chain of the heavy chain-only antibodies, aka nanobodies) selected from a synthetic library. An in vitro Tau aggregation assay was subsequently used as a functional screen to check VHH efficacy as aggregation inhibitors.
View Article and Find Full Text PDFThe use of variable domain of the heavy-chain of the heavy-chain-only antibodies (VHHs) as disease-modifying biomolecules in neurodegenerative disorders holds promises, including targeting of aggregation-sensitive proteins. Exploitation of their clinical values depends however on the capacity to deliver VHHs with optimal physico-chemical properties for their specific context of use. We described previously a VHH with high therapeutic potential in a family of neurodegenerative diseases called tauopathies.
View Article and Find Full Text PDFRAGE is a transmembrane receptor of immunoglobulin family that can bind various endogenous and exogenous ligands, initiating the inflammatory downstream signaling pathways, including inflammaging. Therefore, RAGE represents an attractive drug target for age-related diseases. For the development of small-molecule RAGE antagonists, we employed protein-templated dynamic combinatorial chemistry (ptDCC) using RAGE's VC1 domain as a template, the first application of this approach in the context of RAGE.
View Article and Find Full Text PDFIntrinsically disordered proteins (IDPs) are known to adopt many rapidly interconverting structures, making it difficult to pinpoint the specific conformational states that are relevant for their function. Tau is an important IDP, and its conformation is known to be affected by post-translational modifications (PTMs), such as phosphorylation. To investigate the effect of specific phosphorylation on full-length Tau's dynamic global conformation, we employed a combination of nuclear magnetic resonance-based paramagnetic relaxation interference methods and electron paramagnetic resonance spectroscopy.
View Article and Find Full Text PDFPrion-like spread of disease-specific tau conformers is a hallmark of all tauopathies. A 19-residue probe peptide containing a P301L mutation and spanning the R2/R3 splice junction of tau, folds and stacks into seeding-competent fibrils and induces aggregation of 4R, but not 3R tau. These tau peptide fibrils propagate aggregated intracellular tau over multiple generations, have a high β-sheet content, a colocalized lipid signal, and adopt a well-defined U-shaped fold found in 4R tauopathy brain-derived fibrils.
View Article and Find Full Text PDFAn increase in phosphorylation of the Tau protein is associated with Alzheimer's disease (AD) progression through unclear molecular mechanisms. In general, phosphorylation modifies the interaction of intrinsically disordered proteins, such as Tau, with other proteins; however, elucidating the structural basis of this regulation mechanism remains challenging. The bridging integrator-1 gene is an AD genetic determinant whose gene product, BIN1, directly interacts with Tau.
View Article and Find Full Text PDFTau proteins aggregate into filaments in brain cells in Alzheimer's disease and related disorders referred to as tauopathies. Here, we used fragments of camelid heavy-chain-only antibodies (VHHs or single domain antibody fragments) targeting Tau as immuno-modulators of its pathologic seeding. A VHH issued from the screen against Tau of a synthetic phage-display library of humanized VHHs was selected for its capacity to bind Tau microtubule-binding domain, composing the core of Tau fibrils.
View Article and Find Full Text PDFThe microtubule-associated protein tau is implicated in the formation of oligomers and fibrillar aggregates that evade proteostasis control and spread from cell-to-cell. Tau pathology is accompanied by sustained neuroinflammation and, while the release of alarmin mediators aggravates disease at late stages, early inflammatory responses encompass protective functions. This is the case of the Ca-binding S100B protein, an astrocytic alarmin which is augmented in AD and which has been recently implicated as a proteostasis regulator, acting over amyloid β aggregation.
View Article and Find Full Text PDFThe main protease (3CLp) of the SARS-CoV-2, the causative agent for the COVID-19 pandemic, is one of the main targets for drug development. To be active, 3CLp relies on a complex interplay between dimerization, active site flexibility, and allosteric regulation. The deciphering of these mechanisms is a crucial step to enable the search for inhibitors.
View Article and Find Full Text PDFFront Mol Neurosci
June 2021
Phosphorylation of the neuronal microtubule-associated Tau protein plays a critical role in the aggregation process leading to the formation of insoluble intraneuronal fibrils within Alzheimer's disease (AD) brains. In recent years, other posttranslational modifications (PTMs) have been highlighted in the regulation of Tau (dys)functions. Among these PTMs, the -β-linked N-acetylglucosaminylation (-GlcNAcylation) modulates Tau phosphorylation and aggregation.
View Article and Find Full Text PDFProtein-protein interactions (PPIs) remain poorly explored targets for the treatment of Alzheimer's disease. The interaction of 14-3-3 proteins with Tau was shown to be linked to Tau pathology. This PPI is therefore seen as a potential target for Alzheimer's disease.
View Article and Find Full Text PDFStabilization of protein-protein interactions (PPIs) holds great potential for therapeutic agents, as illustrated by the successful drugs rapamycin and lenalidomide. However, how such interface-binding molecules can be created in a rational, bottom-up manner is a largely unanswered question. We report here how a fragment-based approach can be used to identify chemical starting points for the development of small-molecule stabilizers that differentiate between two different PPI interfaces of the adapter protein 14-3-3.
View Article and Find Full Text PDFNatural compounds are an important class of potent drug molecules including some retrospectively found to act as stabilizers of protein-protein interactions (PPIs). However, the design of synthetic PPI stabilizers remains an understudied approach. To date, there are limited examples where cooperativity has been utilized to guide the optimization of a PPI stabilizer.
View Article and Find Full Text PDFProtein-protein interactions (PPIs) of 14-3-3 proteins are a model system for studying PPI stabilization. The complex natural product Fusicoccin A stabilizes many 14-3-3 PPIs but is not amenable for use in SAR studies, motivating the search for more drug-like chemical matter. However, drug-like 14-3-3 PPI stabilizers enabling such studies have remained elusive.
View Article and Find Full Text PDFHuman neuron-specific PACSIN1 plays a key role in synaptic vesicle recycling and endocytosis, as well as reorganization of the microtubule dynamics to maintain axonal plasticity. PACSIN1 contains a highly conserved C-terminal SH3 domain and an F-bar domain at its N-terminus. Due to its remarkable interaction network, PACSIN1 plays a central role in key neuronal functions.
View Article and Find Full Text PDFAlthough Tau is an intrinsically disordered protein, some level of structure can still be defined, corresponding to short stretches of dynamic secondary structures and a preferential global fold described as an ensemble of conformations. These structures can be modified by Tau phosphorylation, and potentially other post-translational modifications. The analytical capacity of Nuclear Magnetic Resonance (NMR) spectroscopy provides the advantage of offering a residue-specific view of these modifications, allowing to link specific sites to a particular structure.
View Article and Find Full Text PDFProtein-protein interactions (PPIs) are at the core of regulation mechanisms in biological systems and consequently became an attractive target for therapeutic intervention. PPIs involving the adapter protein 14-3-3 are representative examples given the broad range of partner proteins forming a complex with one of its seven human isoforms. Given the challenges represented by the nature of these interactions, fragment-based approaches offer a valid alternative for the development of PPI modulators.
View Article and Find Full Text PDF