Publications by authors named "Isabelle Lampre"

This paper reviews the radiation-induced synthesis of metallic nanostructures and their applications. Radiolysis is a powerful method for synthesizing metallic nanoparticles in solution and heterogeneous media, and it is a clean alternative to other existing physical, chemical, and physicochemical methods. By varying parameters such as the absorbed dose, dose rate, concentrations of metallic precursors, and nature of stabilizing agents, it is possible to control the size, shape, and morphology (alloy, core-shell, etc.

View Article and Find Full Text PDF

Silver nanoparticles (AgNPs) with broad-spectrum antimicrobial properties are gaining increasing interest in fighting multidrug-resistant bacteria. Herein, we describe the synthesis of AgNPs, stabilized by polyvinyl alcohol (PVA), with high purity and homogeneous sizes, using radiolysis. Solvated electrons and reducing radicals are induced from solvent radiolysis and no other chemical reducing agents are needed to reduce the metal ions.

View Article and Find Full Text PDF

Antineoplastic agents are, for most of them, highly toxic drugs prepared at hospital following individualized prescription. To protect patients and healthcare workers, it is important to develop analytical tools able to identify and quantify such drugs on a wide concentration range. In this context, surface enhanced Raman spectroscopy (SERS) has been tested as a specific and sensitive technique.

View Article and Find Full Text PDF

In this paper, we report the first synthesis and characterisations of bimetallic gold(i)-silver(i) calix[8]arene complexes. We show that the radiolytic reduction of these complexes leads to the formation of small bimetallic nanoparticles with an alloyed structure, as evidenced by XPS, HR-TEM and STEM/HAADF-EDX measurements.

View Article and Find Full Text PDF

Redox reactions are of great importance in environmental catalysis. Gold nanoparticles (Au-NPs) have attracted much attention because of their catalytic activity and their localized surface plasmon resonance (LSPR). In the present study, we investigated, in detail, the reduction of ferricyanide (III) ion into a ferrocyanide (II) ion catalyzed by spherical gold nanoparticles of two different sizes, 15 nm and 30 nm, and excited at their LSPR band.

View Article and Find Full Text PDF

The reaction of (•)OH with Br(-) has been reinvestigated by picosecond pulse radiolysis combined with streak camera absorption detection and the obtained spectro-kinetics data have been globally analyzed using Bayesian data analysis. For the first time, the absorption spectrum of the intermediate species BrOH(•-) has been determined. This species absorbs in the same spectral domain as Br(2)(•-): the band maximum is roughly at the same wavelength (λ(max) = 352 nm instead of 354 nm) but the extinction coefficient is smaller (ε(max) = 7800 ± 400 dm(3) mol(-1) cm(-1) compared with 9600 ± 300 dm(3) mol(-1) cm(-1)) and the band is broader (88 nm versus 76 nm).

View Article and Find Full Text PDF

Two covalently linked porphyrin-polyoxometalate hybrids have been prepared: an Anderson-type hexamolybdate [N(C(4)H(9))(4)](3)[MnMo(6)O(18){(OCH(2))(3)CNHCO(ZnTPP)}(2)] with two pendant zinc(II)-tetraphenylporphyrins, and a Dawson-type vanadotungstate [N(C(4)H(9))(4)](5)H[P(2)V(3)W(15)O(59){(OCH(2))(3)CNHCO(ZnTPP)}] with one porphyrin. Electrochemical studies show independent redox processes for the organic and inorganic parts at usual potentials. Photophysical studies reveal an electron transfer from the excited porphyrin to the Dawson polyoxometalate, but not to the Anderson polyoxometalate.

View Article and Find Full Text PDF

With a revisit of the absorption coefficient of the solvated electron in propane-1,2,3-triol, the temperature-dependent behavior of the absorption spectrum of solvated electron was studied from room temperature to 573 K by pulse radiolysis techniques. The change in the absorption spectrum of solvated electron in propane-1,2,3-triol observed by cooling down from a high temperature to 333 K is compared with that occurring during the electron solvation process at 333 K. The effect of the specific molecular structure of propane-1,2,3-triol compared to other alcohols is discussed.

View Article and Find Full Text PDF

The absorption spectra of the hydrated electron in 1.0 to 4.0 M LiCl or LiClO4 deuterated water solutions were measured by pulse radiolysis techniques from room temperature to 300 degrees C at a constant pressure of 25 MPa.

View Article and Find Full Text PDF

The absorption spectra of the solvated electron in 1,2-ethanediol (12ED), 1,2-propanediol (12PD), and 1,3-propanediol (13PD) have been determined by nanosecond pulse radiolysis techniques. The maximum of the absorption band located at 570, 565, and 575 nm for these three solvents, respectively. With 4,4'-bipyridine (44Bpy) as a scavenger, the molar extinction coefficients at the absorption maximum of the solvated electron spectrum have been evaluated to be 900, 970, and 1000 mol-1 m2 for 12ED, 12PD, and 13PD, respectively.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionn8f7s5ke8k2n69ur41h0lo7ojp6duvvf): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once