The Off-Gel technology was recently described for protein fractionation in a solution placed on top of an immobilized pH gradient gel. In addition, this process was found to remove salts from the biological samples to analyze. This desalting effect is studied experimentally in a conductometric prototype cell.
View Article and Find Full Text PDFWe present the state-of-the-art in miniaturized sample preparation, immunoassays, one-dimensional and multidimensional analyte separations, and coupling of microdevices with electrospray ionization-mass spectrometry. Hyphenation of these different techniques and their relevance to proteomics will be discussed. In particular, we will show that analytical performances of microfluidic analytical systems are already close to fulfill the requirements for proteomics, and that miniaturization results at the same time in a dramatic increase in analysis throughput.
View Article and Find Full Text PDFA new protein fractionation technique based on off-gel isoelectric focusing (IEF) is presented, where the proteins are separated according to their isoelectric point (pI) in a multiwell device with the advantage to be directly recovered in solution for further analysis. The protein fractions obtained with this technique have then been characterized with polymer nanoelectrospray for mass spectrometry (MS) analyses or with Bioanalyzer for mass identification. This methodology shows the possibility of developing alternatives to the classical two-dimensional (2-D) gel electrophoresis.
View Article and Find Full Text PDFThe protonation of an aqueous solution of two ampholytes AH and BH next to a gel buffered by immobilized acid moieties IH has been studied by finite element simulation in an iterative scheme. A ten species model has been formulated, taking into account transient diffusion and equilibrium kinetics of the two amphoteric species AH and BH, of water and of the immobilized species IH. This model has been developed to illustrate the pH evolution between an ampholyte solution and an Immobiline gel, and to study the influence of the Immobiline concentration on protons and ampholyte distributions.
View Article and Find Full Text PDF