Publications by authors named "Isabelle Jariel-Encontre"

Background: How transcription factors (TFs) down-regulate gene expression remains ill-understood, especially when they bind to multiple enhancers contacting the same gene promoter. In particular, it is not known whether they exert similar or significantly different molecular effects at these enhancers.

Results: To address this issue, we used a particularly well-suited study model consisting of the down-regulation of the TGFB2 gene by the TF Fra-1 in Fra-1-overexpressing cancer cells, as Fra-1 binds to multiple enhancers interacting with the TGFB2 promoter.

View Article and Find Full Text PDF

Background: JUNB transcription factor contributes to the formation of the ubiquitous transcriptional complex AP-1 involved in the control of many physiological and disease-associated functions. The roles of JUNB in the control of cell division and tumorigenic processes are acknowledged but still unclear.

Results: Here, we report the results of combined transcriptomic, genomic, and functional studies showing that JUNB promotes cell cycle progression via induction of cyclin E1 and repression of transforming growth factor (TGF)-β2 genes.

View Article and Find Full Text PDF
Article Synopsis
  • The histone variant macroH2A1.1 is important in cancer development and impacts gene expression in breast cancer cells.
  • It binds to active regions of the genome, specifically at promoters and enhancers, and can either suppress or stimulate gene transcription depending on the surrounding chromatin structure.
  • The protein helps regulate the transition of paused RNA polymerase II into an active state, influencing the expression of genes related to tumor cell migration without altering enhancer-promoter interactions.
View Article and Find Full Text PDF
Article Synopsis
  • The AP-1 family, consisting of Fos and Jun proteins, plays a crucial yet unclear role in transcription regulation, particularly in triple negative breast cancers (TNBC), where Fra-1 is overexpressed and contributes to tumor aggressiveness.
  • A combination of advanced techniques, like transcriptomics and machine learning, revealed that both Fra-1 and Fra-2 regulate numerous genes, influencing various biological processes through their binding to regulatory elements far from gene promoters, impacting transcription regulation.
  • The study indicates that while Fra-1 doesn't significantly affect chromatin structure at target genes, it may enhance interactions between bound and unbound elements within chromatin, altering our understanding of AP-1's role
View Article and Find Full Text PDF

Background: We investigated the influence of hypoxia on the concentration of mitochondrial and nuclear cell-free DNA (McfDNA and NcfDNA, respectively).

Method: By an ultra-sensitive quantitative PCR-based assay, McfDNA and NcfDNA were measured in the supernatants of different colorectal cell lines, and in the plasma of C57/Bl6 mice engrafted with TC1 tumour cells, in normoxic or hypoxic conditions.

Results: Our data when setting cell culture conditions highlighted the higher stability of McfDNA as compared to NcfDNA and revealed that cancer cells released amounts of nuclear DNA equivalent to the mass of a chromosome over a 6-h duration of incubation.

View Article and Find Full Text PDF

The architectural chromatin protein HMGA1 and the transcription factor Fra-1 are both overexpressed in aggressive triple-negative breast cancers (TNBC), where they both favor epithelial-to-mesenchymal transition, invasion, and metastasis. We therefore explored the possibility that Fra-1 might be involved in enhanced transcription of the gene in TNBCs by exploiting cancer transcriptome datasets and resorting to functional studies combining RNA interference, mRNA and transcriptional run-on assays, chromatin immunoprecipitation, and chromosome conformation capture approaches in TNBC model cell lines. Our bioinformatic analysis indicated that Fra-1 and HMGA1 expressions positively correlate in primary samples of patients with TNBC.

View Article and Find Full Text PDF
Article Synopsis
  • * Recent "omics" technologies have enhanced our understanding of how AP-1 influences gene transcription, revealing that it may act both locally near transcription start sites and distally at enhancers.
  • * These studies highlight the importance of chromatin architecture in AP-1's actions and introduce new mechanisms through which AP-1 regulates gene expression, including transcription pioneering and chromatin remodeling.
View Article and Find Full Text PDF

Plau codes for the urokinase-type plasminogen activator (uPA), critical in cancer metastasis. While the mechanisms driving its overexpression in tumorigenic processes are unknown, it is regulated by the AP-1 transcriptional complex in diverse situations. The AP-1 component Fra-1 being overexpressed in aggressive breast cancers, we have addressed its role in the overexpression of Plau in the highly metastatic breast cancer model cell line MDA-MB231 using ChIP, pharmacological and RNAi approaches.

View Article and Find Full Text PDF

The c-Fos proto-oncogenic transcription factor defines a multigene family controlling many processes both at the cell and the whole organism level. To bind to its target AP-1/12-O-tetradecanoylphorbol-13-acetate-responsive element or cAMP-responsive element DNA sequences in gene promoters and exert its transcriptional part, c-Fos must heterodimerize with other bZip proteins, its best studied partners being the Jun proteins (c-Jun, JunB, and JunD). c-Fos expression is regulated at many transcriptional and post-transcriptional levels, yet little is known on how its localization is dynamically regulated in the cell.

View Article and Find Full Text PDF

c-Fos proto-oncoprotein defines a family of closely related transcription factors (Fos proteins) also comprising Fra-1, Fra-2, FosB and DeltaFosB, the latter two proteins being generated by alternative splicing. Through the regulation of many genes, most of them still unidentified, they regulate major functions from the cell level up to the whole organism. Thus they are involved in the control of proliferation, differentiation and apoptosis, as well as in the control of responses to stresses, and they play important roles in organogenesis, immune responses and control of cognitive functions, among others.

View Article and Find Full Text PDF
Article Synopsis
  • Stress granules (SG) store untranslated RNA during environmental stress, while processing bodies (PBs) are involved in mRNA degradation.
  • A novel family of proteins related to the C. elegans Mex-3, specifically hMex-3B, was characterized, with 14-3-3 proteins binding to hMex-3B at a specific site when phosphorylated.
  • This binding stabilizes hMex-3B, influences its RNA binding capacity, and affects its localization to RNA granules, highlighting the role of 14-3-3 in regulating the sorting of RNA molecules between SG and PBs.
View Article and Find Full Text PDF

The proteasome is the main proteolytic machinery of the cell and constitutes a recognized drugable target, in particular for treating cancer. It is involved in the elimination of misfolded, altered or aged proteins as well as in the generation of antigenic peptides presented by MHC class I molecules. It is also responsible for the proteolytic maturation of diverse polypeptide precursors and for the spatial and temporal regulation of the degradation of many key cell regulators whose destruction is necessary for progression through essential processes, such as cell division, differentiation and, more generally, adaptation to environmental signals.

View Article and Find Full Text PDF

JunB, a member of the AP-1 family of dimeric transcription factors, is best known as a cell proliferation inhibitor, a senescence inducer, and a tumor suppressor, although it also has been attributed a cell division-promoting activity. Its effects on the cell cycle have been studied mostly in G1 and S phases, whereas its role in G2 and M phases still is elusive. Using cell synchronization experiments, we show that JunB levels, which are high in S phase, drop during mid- to late G2 phase due to accelerated phosphorylation-dependent degradation by the proteasome.

View Article and Find Full Text PDF

In eukaryotic cells, proteasomes play an essential role in intracellular proteolysis and are involved in the control of most biological processes through regulated degradation of key proteins. Analysis of 20S proteasome localization in human cell lines, using ectopic expression of its CFP-tagged alpha7 subunit, revealed the presence in nuclear foci of a specific and proteolytically active complex made by association of the 20S proteasome with its PA28gamma regulator. Identification of these foci as the nuclear speckles (NS), which are dynamic subnuclear structures enriched in splicing factors (including the SR protein family), prompted us to analyze the role(s) of proteasome-PA28gamma complexes in the NS.

View Article and Find Full Text PDF

The Fos family of transcription factors comprises c-Fos, Fra-1, Fra-2 and FosB, which are all intrinsically unstable proteins. Fos proteins heterodimerize with a variety of other transcription factors to control genes encoding key cell regulators. Their best known partners are the Jun family proteins (c-Jun, JunB, and JunD).

View Article and Find Full Text PDF

c-Fos proto-oncoprotein forms AP-1 transcription complexes with heterodimerization partners such as c-Jun, JunB, and JunD. Thereby, it controls essential cell functions and exerts tumorigenic actions. The dynamics of c-Fos intracellular distribution is poorly understood.

View Article and Find Full Text PDF

Fra-1, a transcription factor that is phylogenetically and functionally related to the proto-oncoprotein c-Fos, controls many essential cell functions. It is expressed in many cell types, albeit with differing kinetics and abundances. In cells reentering the cell cycle, Fra-1 expression is transiently stimulated albeit later than that of c-Fos and for a longer time.

View Article and Find Full Text PDF

The inducible transcriptional complex AP-1, composed of c-Fos and c-Jun proteins, is crucial for cell adaptation to many environmental changes. While its mechanisms of activation have been extensively studied, how its activity is restrained is poorly understood. We report here that lysine 265 of c-Fos is conjugated by the peptidic posttranslational modifiers SUMO-1, SUMO-2, and SUMO-3 and that c-Jun can be sumoylated on lysine 257 as well as on the previously described lysine 229.

View Article and Find Full Text PDF

The proteasome is the main proteolytic machinery of the cell. It is responsible for the basal turnover of many intracellular polypeptides, the elimination of abnormal proteins and the generation of the vast majority of peptides presented by class I major histocompatibility complex molecules. Proteasomal proteolysis is also involved in the control of virtually all cellular functions and major decisions through the spatially and timely regulated destruction of essential cell regulators.

View Article and Find Full Text PDF

The proteasome is the main intracellular proteolytic machinery. It is involved in all major cellular functions and decisions. It has long been thought that prior ubiquitinylation of almost all of its substrates was necessary for degradation.

View Article and Find Full Text PDF

The transcription factor Elk-1 is a nuclear target of mitogen-activated protein kinases and regulates immediate early gene activation by extracellular signals. We show that Elk-1 is also conjugated to SUMO on either lysines 230, 249, or 254. Mutation of all three sites is necessary to fully block SUMOylation in vitro and in vivo.

View Article and Find Full Text PDF

Prior ubiquitinylation of the unstable c-Fos proto-oncoprotein is thought to be required for recognition and degradation by the proteasome. Contradicting this view, we report that, although c-Fos can form conjugates with ubiquitin in vivo, nonubiquitinylatable c-Fos mutants show regulated degradation identical to that of the wild-type protein in living cells under two classical conditions of study: transient c-fos gene expression during the G(0)/G(1) phase transition upon stimulation by mitogens and constitutive expression during asynchronous growth. Moreover, c-Fos destruction during the G(0)/G(1) phase transition is unusual because it depends on two distinct but cumulative mechanisms.

View Article and Find Full Text PDF

c-fos gene is expressed constitutively in a number of tissues as well as in certain tumor cells and is inducible, in general rapidly and transiently, in virtually all other cell types by a variety of stimuli. Its protein product, c-Fos, is a short-lived transcription factor that heterodimerizes with various protein partners within the AP-1 transcription complex via leucine zipper/leucine zipper interactions for binding to specific DNA sequences. It is mostly, if not exclusively, degraded by the proteasome.

View Article and Find Full Text PDF

c-Fos protooncoprotein is a short-lived transcription factor with oncogenic potential. It is massively degraded by the proteasome in vivo under various experimental conditions. Those include consititutive expression in exponentially growing cells and transient induction in cells undergoing the G0/G1 phase transition upon stimulation by serum.

View Article and Find Full Text PDF

c-Fos proto-oncoprotein is highly unstable, which is crucial for rapid gene expression shut-off and control of its intrinsic oncogenic potential. It is massively degraded by the proteasome in vivo in various situations. Although there is evidence that c-Fos can be ubiquitinylated in vitro, the unambiguous demonstration that ubiquitinylation is necessary for recognition and subsequent hydrolysis by the proteasome in vivo is still lacking.

View Article and Find Full Text PDF