Purpose: Epithelial ovarian cancer has the highest mortality rate of all gynecological malignancies. We have shown that high RAN expression strongly correlates with high-grade and poor patient survival in epithelial ovarian cancer. However, as RAN is a small GTPase involved in two main biological functions, nucleo-cytoplasmic transport and mitosis, it is still unknown which of these functions associate with poor prognosis.
View Article and Find Full Text PDFBackground: Cell line models have proven to be effective tools to investigate a variety of ovarian cancer features. Due to the limited number of cell lines, particularly of the serous subtype, the heterogeneity of the disease, and the lack of cell lines that model disease progression, there is a need to further develop cell line resources available for research. This study describes nine cell lines derived from three ovarian cancer cases that were established at initial diagnosis and at subsequent relapse after chemotherapy.
View Article and Find Full Text PDFThe ATP-binding cassette multidrug resistance protein 1 (MRP1) mediates ATP-dependent cellular efflux of drugs and organic anions. We previously described a mutant, MRP1-Pro1150Ala, which exhibits selectively increased estradiol glucuronide (E217betaG) and methotrexate transport as well as altered interactions with ATP. We have now further explored the functional importance of MRP1-Pro1150 at the interface of transmembrane helix 15 and cytoplasmic loop 7 (CL7) by replacing it with Gly, Ile, Leu and Val.
View Article and Find Full Text PDFThe ATP-binding cassette multidrug resistance protein 1 MRP1 (ABCC1) mediates the cellular efflux of organic anions including conjugated metabolites, chemotherapeutic agents, and toxicants. We previously described a mutation in cytoplasmic loop 7 (CL7) of MRP1, Pro1150Ala, which reduced leukotriene C(4) (LTC(4)) transport but increased 17beta-estradiol 17beta-d-glucuronide (E(2)17betaG) and methotrexate (MTX) transport. Vanadate-induced trapping of [alpha-(32)P]8N(3)ADP by the Pro1150Ala mutant in the absence of substrate was also greatly reduced compared with wild-type MRP1 suggesting an uncoupling of ATP hydrolysis and transport activity.
View Article and Find Full Text PDFThe 190-kDa ATP-binding cassette (ABC) multidrug resistance protein 1 (MRP1) encoded by the MRP1/ABCC1 gene mediates the active cellular efflux of glucuronide, glutathione and sulfate conjugates. It can also confer resistance to a diverse spectrum of chemotherapeutic agents and transport a variety of toxicants. In the present study, we examined 10 MRP1/ABCC1 missense genetic variants [non-synonymous single nucleotide polymorphisms (SNPs)] to determine whether or not they affect expression or function of the transporter.
View Article and Find Full Text PDFThe human ATP-binding cassette proteins MRP1 (ABCC1), MRP2 (ABCC2) and MRP3 (ABCC3) are active transporters of antineoplastic drugs as well as conjugated metabolites and other organic anions. In addition to being substrates, many glucuronide, glutathione and sulfate conjugates can also inhibit the transport activities of these MRP-related proteins, sometimes in a glutathione (GSH)-dependent manner. Nicotine is the major addictive component of cigarette smoke.
View Article and Find Full Text PDFThe 190 kDa multidrug resistance protein 1 (MRP1; ABCC1) is comprised of three membrane spanning domains (MSDs) and two nucleotide binding domains (NBDs) configured MSD1-MSD2-NBD1-MSD3-NBD2. MRP1 overexpression in tumor cells results in an ATP-dependent efflux of many oncolytic agents and arsenic and antimony oxyanions. MRP1 also transports GSSG and GSH as well as conjugated organic anions, including leukotriene C(4) and 17beta-estradiol 17-(beta-D-glucuronide) and certain xenobiotics in association with GSH.
View Article and Find Full Text PDF