Objective: Stiripentol (STP; Diacomit®) is an antiepileptic drug indicated for Dravet syndrome that has been identified as a γ-aminobutyric acid (GABAergic) positive allosteric modulator. Dravet syndrome is characterized by multiple seizure types: generalized tonic-clonic, focal, myoclonic, and absence seizures. In addition to its antiepileptic effects on tonic-clonic seizures, STP has also been reported to reduce the frequency of atypical absence seizures in patients.
View Article and Find Full Text PDFDysfunction of GABAergic transmission related to abnormal expression of GABA(A) receptor subunits in specific brain regions underlies some pathological anxiety states. Besides involvement of the benzodiazepine recognition site of GABA(A) receptor in the expression of anxiety-like behaviour, the roles of the β(2)/β(3) subunits are not well characterized. To address this issue, the experimental design of this study utilized the GABAergic compound etifoxine (with a preferential effectiveness after binding to a specific site at β(2)/β(3) subunits) tested in two inbred mouse strains: BALB/cByJ and C57BL/6J mice using three behavioural paradigms (light/dark box, elevated plus maze and restraint stress-induced small intestinal transit inhibition) and the t-butylbicyclophosphorothionate-induced convulsions model.
View Article and Find Full Text PDFChange in the function of gamma-aminobutyric acid(A) (GABA(A)) receptors attributable to alterations in receptor subunit composition is one of main molecular mechanisms with those affecting the glutamatergic system which accompany prolonged alcohol (ethanol) intake. These changes explain in part the central nervous system hyperexcitability consequently to ethanol administration cessation. Hyperexcitability associated with ethanol withdrawal is expressed by physical signs, such as tremors, convulsions, and heightened anxiety in animal models as well as in humans.
View Article and Find Full Text PDFRationale: A disordered regulation of neuroactive steroids release in response to acute stress could induce GABAergic dysfunctions underlying anxiety disorders.
Objectives: First, we conducted studies indicating that a short immobilization stress in anxious Balb/cByJ mice produced an anticonvulsive effect. Second, the effects of different positive allosteric modulators (etifoxine, progesterone, clonazepam, and allopregnanolone) of GABA A receptors were compared in a mouse model mimicking the disruption of the acute stress-induced neuroactive steroids release with finasteride (types I and II 5alpha-reductase inhibitor).
In order to specify the nature of interactions between the analgesic compound nefopam and the glutamatergic system, we examined the effects of nefopam on binding of specific ligands on the three main subtypes ionotropic glutamate receptors: N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA), or quisqualic acid (QA) and kainic acid (KA) in rat brain membrane preparations. Functionally, we investigated the effects of nefopam against the seizures induced by agonists of these excitatory glutamate receptors in mice. Since the synaptic release of glutamate mainly depends upon the activation of membrane voltage-sensitive sodium channels (VSSCs), the nature of interactions between nefopam and these ionic channels was studied by evaluating the effects of nefopam on binding of 3H-batrachotoxinin, a specific ligand of the VSSCs in rat brain membrane preparations.
View Article and Find Full Text PDFWe hypothesized that functional changes in the GABAergic system induced by stress would differ between two inbred mouse strains BALB/cByJ and C57BL/6J. We compared the effects of restraint stress and of the anxiolytic drug etifoxine (EFX) on the duration of pentobarbital-induced loss of righting reflex (hypnotic effect) in the two strains. Naive BALB/cByJ mice were less sensitive than naive C57BL/6J mice to the hypnotic effect of pentobarbital.
View Article and Find Full Text PDF