Wheat bran extract (WBE) is a food-grade soluble fibre preparation that is highly enriched in arabinoxylan-oligosaccharides. In this placebo-controlled cross-over human intervention trial, tolerance to WBE as well as the effects of WBE on faecal parameters, including faecal output and bowel habits, were studied. After a 2-week run-in period, twenty healthy volunteers consumed WBE (15 g/d in the first week, 30 g/d in the second week), oligofructose (15 g/d in the first week, 30 g/d in the second week) and placebo (for 2 weeks) in a random order, with 2-week washout periods between each treatment period.
View Article and Find Full Text PDFObjectives: We assessed whether wheat bran extract (WBE) containing arabinoxylan-oligosaccharides (AXOS) elicited a prebiotic effect and modulated gastrointestinal (GI) parameters in healthy preadolescent children upon consumption in a beverage.
Methods: This double-blind randomized placebo-controlled crossover trial evaluated the effects of consuming WBE at 0 (control) or 5.0 g/day for 3 weeks in 29 healthy children (8-12 years).
Wheat bran extract (WBE) is a food-grade soluble fibre preparation that is highly enriched in arabinoxylan oligosaccharides. In this placebo-controlled cross-over human intervention trial, tolerance and effects on colonic protein and carbohydrate fermentation were studied. After a 1-week run-in period, sixty-three healthy adult volunteers consumed 3, 10 and 0 g WBE/d for 3 weeks in a random order, with 2 weeks' washout between each treatment period.
View Article and Find Full Text PDFA series of substituted benzylsulfanyl-phenylamines was synthesized, of which four substituted benzylsulfanyl-phenylguanidines (665, 666, 667 and 684) showed potent fungicidal activity (minimal fungicidal concentration, MFC ≤ 10 μM for Candida albicans and Candida glabrata). A benzylsulfanyl-phenyl scaffold with an unsubstituted guanidine resulted in less active compounds (MFC=50-100 μM), whereas substitution with an unsubstituted amine group resulted in compounds without fungicidal activity. Compounds 665, 666, 667 and 684 also showed activity against single C.
View Article and Find Full Text PDFWheat bran extract (WBE) is a food-grade preparation that is highly enriched in arabinoxylan-oligosaccharides. As part of the safety evaluation of WBE, its genotoxic potential was assessed in a bacterial reverse mutagenicity assay (Ames test) and a chromosome aberration assay on Chinese hamster lung fibroblast cells. These in vitro genotoxicity assays showed no evidence of mutagenic or clastogenic activity with WBE.
View Article and Find Full Text PDFTo unravel the working mechanism of the fungicidal piperazine-1-carboxamidine derivative BAR0329, we found that its intracellular accumulation in Saccharomyces cerevisiae is dependent on functional lipid rafts. Moreover, BAR0329 induced caspase-dependent apoptosis in yeast, in which the mitochondrial fission machinery consisting of Fis1 (Whi2), Dnm1 and Mdv1 is involved. Our data are consistent with a prosurvival function of Fis1 (Whi2) and a proapoptotic function of Dnm1 and Mdv1 during BAR0329-induced yeast cell death.
View Article and Find Full Text PDFWe demonstrated that a yeast deletion mutant in IPT1 and SKN1, encoding proteins involved in the biosynthesis of mannosyldiinositolphosphoryl ceramides, is characterized by increased autophagy and DNA fragmentation upon nitrogen (N) starvation as compared with the single deletion mutants or wild type (WT). Apoptotic features were not significantly different between single and double deletion mutants upon N starvation, pointing to increased autophagy in the double Deltaipt1 Deltaskn1 deletion mutant independent of apoptosis. We observed increased basal levels of phytosphingosine in membranes of the double Deltaipt1 Deltaskn1 deletion mutant as compared with the single deletion mutants or WT.
View Article and Find Full Text PDFAzoles inhibit ergosterol biosynthesis, resulting in ergosterol depletion and accumulation of toxic 14alpha-methylated sterols in membranes of susceptible yeast. We demonstrated previously that miconazole induces actin cytoskeleton stabilization in Saccharomyces cerevisiae prior to induction of reactive oxygen species, pointing to an ancillary mode of action. Using a genome-wide agar-based screening, we demonstrate in this study that S.
View Article and Find Full Text PDFBackground: Prebiotics are non-digestible compounds that beneficially affect the host by stimulating the growth and/or activity of one or a limited number of resident colonic bacteria in the gut. Reported beneficial effects of prebiotics include reduced gut infections, better absorption of minerals, and notably, antitumorigenic effects. Arabinoxylan (AX)-oligosaccharides (AXOS) have been suggested to exert prebiotic effects in the gut, but their effect on colon carcinogenesis has not been studied so far.
View Article and Find Full Text PDFWe show that the antifungal plant defensin Raphanus sativus antifungal protein 2 (RsAFP2) from radish induces apoptosis and concomitantly triggers activation of caspases or caspase-like proteases in the human pathogen Candida albicans. Furthermore, we demonstrate that deletion of C. albicans metacaspase 1, encoding the only reported (putative) caspase in C.
View Article and Find Full Text PDFWe synthesized a family of 3,5-dichloropyrazin-2(1H)-one derivatives and assessed their in vitro fungicidal activity against Candida albicans. Compounds 11 and 20 were most active against C. albicans and induced accumulation of reactive oxygen species in this pathogen.
View Article and Find Full Text PDFWe show that RsAFP2, a plant defensin that interacts with fungal glucosylceramides, is active against Candida albicans, inhibits to a lesser extent other Candida species, and is nontoxic to mammalian cells. Moreover, glucosylceramide levels in Candida species correlate with RsAFP2 sensitivity. We found RsAFP2 prophylactically effective against murine candidiasis.
View Article and Find Full Text PDFThe minimal fungicidal concentration (MFC) of dihydrosphingosine (DHS), phytosphingosine (PHS), and five short-chain DHS derivatives was determined for Candida albicans and Candida glabrata. In this respect, a C15- and a C17-homologue of DHS showed a 2- to 10-fold decreased MFC as compared to native DHS (i.e.
View Article and Find Full Text PDFTo defend themselves against invading fungal pathogens, plants and insects largely depend on the production of a wide array of antifungal molecules, including antimicrobial peptides such as defensins. Interestingly, plant and insect defensins display antimicrobial activity not only against plant and insect pathogens but also against human fungal pathogens, including Candida spp. and Aspergillus spp.
View Article and Find Full Text PDFRsAFP2 (Raphanus sativus antifungal peptide 2), an antifungal plant defensin isolated from seed of R. sativus, interacts with glucosylceramides (GlcCer) in membranes of susceptible yeast and fungi and induces membrane permeabilization and fungal cell death. However, using carboxyfluorescein-containing small unilamellar vesicles containing purified GlcCer, we could not observe permeabilization as a consequence of insertion of RsAFP2 in such vesicles.
View Article and Find Full Text PDFThe antifungal compound miconazole inhibits ergosterol biosynthesis and induces reactive oxygen species (ROS) in susceptible yeast species. To further uncover the mechanism of miconazole antifungal action and tolerance mechanisms, we screened the complete set of haploid Saccharomyces cerevisiae gene deletion mutants for mutants with an altered miconazole sensitivity phenotype. We identified 29 S.
View Article and Find Full Text PDFHuman beta-defensin-2 (hBD-2) is a small antimicrobial peptide with potent activity against different Gram-negative bacteria and fungal/yeast species. Since human beta-defensins and plant defensins share structural homology, we set out to analyse whether there also exists a functional homology between these defensins of different eukaryotic kingdoms. To this end, we constructed a plant transformation vector harbouring the hBD-2 coding sequence, which we transformed to Arabidopsis thaliana plants, giving rise to A.
View Article and Find Full Text PDFThe metal tolerance of metal hyper-accumulating plants is a poorly understood mechanism. In order to unravel the molecular basis of zinc (Zn) tolerance in the Zn hyper-accumulating plant Arabidopsis halleri ssp. halleri, we carried out a functional screening of an A.
View Article and Find Full Text PDFApoptosis is implicated in a number of diseases, including neurodegenerative diseases and AIDS. More and more, evidence is accumulating pointing to the critical role of ceramides in the induction of apoptosis. The present review summarizes (i) the molecular basis and regulation of the apoptotic machinery, (ii) the molecular role of ceramides in the induction or execution of apoptotic pathways, and (iii) evidence linking ceramide generation to various apoptotic diseases.
View Article and Find Full Text PDFThe antifungal plant defensin DmAMP1 interacts with fungal sphingolipids of mannosyldiinositolphosphorylceramide (M(IP)2C) class. We screened a Saccharomyces cerevisiae transposon (Tn) mutant library against DmAMP1 and identified one DmAMP1-resistant mutant with the Tn inserted in the M(IP)2C biosynthesis gene IPT1 (DmTn11) and one DmAMP1-hypersensitive mutant with the Tn inserted in rDNA (HsTnII). However, tetrad analysis pointed to HsTnII as a spontaneous mutant.
View Article and Find Full Text PDFThe increasing incidence of fungal infections combined with the emerging problem of antifungal drug resistance have prompted investigations of the mode of action of the currently used antifungal therapeutics (antimycotics). The routinely used antimycotics can be grouped into six different classes based on their mode of action. In this review, the mode of action and antifungal spectrum of these classes are discussed, together with possible resistance development against them.
View Article and Find Full Text PDFSeeds of Impatiens balsamina contain a set of related antimicrobial peptides (Ib-AMPs). We have produced a synthetic variant of Ib-AMP1, oxidized to the bicyclic native conformation, which was fully active on yeast and fungal strains; and four linear 20-mer Ib-AMP variants, including two all-D forms. We show that the all-D variants are as active on yeast and fungal strains as native peptides.
View Article and Find Full Text PDFThe antifungal plant defensin DmAMP1 interacts with the fungal sphingolipid mannosyl diinositolphosphoryl ceramide (M(IP)(2)C) and induces fungal growth inhibition. We have identified SKN1, besides the M(IP)(2)C-biosynthesis gene IPT1, as a novel DmAMP1-sensitivity gene in Saccharomyces cerevisiae. SKN1 was previously shown to be a KRE6 homologue, which is involved in beta-1,6-glucan biosynthesis.
View Article and Find Full Text PDFTo defend themselves against fungal pathogens, plants produce numerous antifungal proteins and peptides, including defensins, some of which have been proposed to interact with fungal cell surface glycosphingolipid components. Although not known as a phytopathogen, the filamentous fungus Neurospora crassa possesses numerous genes similar to those required for plant pathogenesis identified in fungal pathogens (Galagan, J. E.
View Article and Find Full Text PDFPlant defensins are small, basic, cysteine-rich peptides that are generally active against a broad spectrum of fungal and yeast species at micromolar concentrations. Some of these defensins interact with fungal-specific lipid components in the plasmamembrane. Structural differences of these membrane components between fungal and plant cells probably account for the selective activity of plant defensins against fungal pathogens and their nonphytotoxic properties.
View Article and Find Full Text PDF