Cellulose-based suspensions have raised more and more attention due to their broad range of properties that can be used in paper industry and material science but also in medicine, nanotechnology and food science. Their final functionality is largely dependent on their processing history and notably the structural modifications that occur during drying and rehydration. The purpose of this work is to make a state-of-the-art contribution to the mechanisms involved in the process-structure-function relationships of cellulose-based hydrogels.
View Article and Find Full Text PDFThis study examined the effects of bread crumb and crust structure on volatile release and aroma perception during oral processing. French baguettes with different crumb structures were procured from a supermarket or local bakeries (n = 6) or produced in the laboratory via par baking (n = 3). Eight study participants consumed crumb-only and crumb-and-crust samples, and the resulting volatile release was measured in vivo using proton transfer reaction-mass spectrometry.
View Article and Find Full Text PDFThe aim of this work was to gain insight into the effect of food formulation on aroma release and perception, both of which playing an important role in food appreciation. The quality and quantity of retronasal aroma released during food consumption affect the exposure time of olfactory receptors to aroma stimuli, which can influence nutritional and hedonic characteristics, as well as consumption behaviors. In yogurts, fruit preparation formulation can be a key factor to modulate aroma stimulation.
View Article and Find Full Text PDFFor the on-line monitoring of flavour compound release, atmospheric pressure chemical ionization (APCI) and proton transfer reaction (PTR) combined to mass spectrometry (MS) are the most often used ionization technologies. APCI-MS was questioned for the quantification of volatiles in complex mixtures, but direct comparisons of APCI and PTR techniques applied on the same samples remain scarce. The aim of this work was to compare the potentialities of both techniques for the study of in vitro and in vivo flavour release.
View Article and Find Full Text PDFThe consumption protocol used during alcoholic beverage tasting may affect aroma perception. We used an integrated approach combining sensory analysis and physicochemistry to investigate the impact of swallowing on aroma release and perception. A panel of 10 persons evaluated the dynamics of aroma perception during the consumption of a commercial flavored vodka, using the method of temporal dominance of sensations.
View Article and Find Full Text PDFThe objective of this study was to develop a model to simulate salt release during eating. Salt release kinetics during eating was measured for four model dairy products with different dynamic salty perceptions. A simple in vivo model of salt release was developed to differentiate between the contribution of the individual and of the product to salt release.
View Article and Find Full Text PDFPhysicochemical properties (partition and diffusion coefficients) involved in the mobility and release of salt and aroma compounds in model cheeses were determined in this study. The values of NaCl water/product partition coefficients highlighted interactions between proteins and NaCl. However, these interactions were not modified by the product composition or structure.
View Article and Find Full Text PDFThe aim of the present work was to identify and quantify physical mechanisms responsible for in-nose aroma release during the consumption of mint-flavored carbonated beverages in order to better understand how they are perceived. The effect of two composition factors (sugar and CO(2)) was investigated on both the sensory and physicochemical properties of drinks by studying in vitro and in vivo aroma release. Sensory results revealed that the presence of CO(2) increased aroma perception regardless of the sugar content.
View Article and Find Full Text PDFThe paper describes a mechanistic mathematical model for aroma release in the oropharynx to the nasal cavity during food consumption. The model is based on the physiology of the swallowing process and is validated with atmospheric pressure chemical ionization coupled with mass spectrometry measurements of aroma concentration in the nasal cavity of subjects eating flavored yogurt. The study is conducted on 3 aroma compounds representative for strawberry flavor (ethyl acetate, ethyl butanoate, and ethyl hexanoate) and 3 panelists.
View Article and Find Full Text PDFTo better understand aroma release in relation to yogurt structure and perception, the apparent diffusivity of aroma compounds within complex dairy gels was determined using an experimental diffusion cell. Apparent diffusion coefficients of four aroma compounds (diacetyl, ethyl acetate, ethyl hexanoate, and linalool) at 7 degrees C in yogurts (varying in composition and structure) ranged from 0.07 x 10 (-10) to 8.
View Article and Find Full Text PDFAroma compound properties in food matrices, such as volatility and diffusivity, have to be determined to understand the effect of composition and structure on aroma release and perception. This work illustrates the use of mass transfer modeling to identify diffusion and partition properties of ethyl hexanoate in water and in carrageenan matrices with various degrees of structure. The comparison of results obtained with a diffusive model to those obtained with a convective model highlights the importance of considering the appropriate transfer mechanism.
View Article and Find Full Text PDF