Cyanopropyne, CH3-C[triple bond, length as m-dash]C-CN, is a simple molecule whose photochemistry is still unexplored. Here we investigate the UV photolysis of this astrophysically significant nitrile trapped in solid argon. The FTIR study was assisted with 15N-isotopic substitution data and with DFT-level computations including the analyses of ground- and excited-state potential energy surfaces.
View Article and Find Full Text PDFMolecules having C4H3N stoichiometry are of astrophysical interest. Two of these, methylcyanoacetylene (CH3C3N) and its structural isomer allenyl cyanide (H2CCCHN), have been observed in interstellar space, while several more have been examined in laboratories. Here we describe, for a broad range of C4H3N isomers, density functional calculations (B3LYP/aug-cc-pVTZ) of molecular parameters including the energetics, geometries, rotational constants, electric dipole moments, polarizabilities, vibrational IR frequencies, IR absorption intensities, and Raman activities.
View Article and Find Full Text PDFTitan, the largest moon of Saturn and similar to Earth in many aspects, has unique orange-yellow colour that comes from its atmospheric haze, whose formation and dynamics are far from well understood. Present models assume that Titan's tholin-like haze formation occurs high in atmosphere through gas-phase chemical reactions initiated by high-energy solar radiation. Here we address an important question: Is the lower atmosphere of Titan photochemically active or inert? We demonstrate that indeed tholin-like haze formation could occur on condensed aerosols throughout the atmospheric column of Titan.
View Article and Find Full Text PDFA zwitterion is formed in the laboratory at low temperatures in the solid phase from the thermal reaction of HC(3)N and NH(3). We report for the first time its infrared spectrum. We study its reaction using Fourier transform infrared spectroscopy.
View Article and Find Full Text PDFElectronic absorption and emission spectra have been investigated for cyanodiacetylene, HC(5)N, an astrophysically relevant molecule. The analysis of gas-phase absorption was assisted with the parallel rare gas matrix isolation experiments and with density functional theory (DFT) predictions concerning the excited electronic states. Mid-UV systems B (1)Delta<--X (1)Sigma(+) (origin at 282.
View Article and Find Full Text PDFFive aryliminopropadienones 4a- d have been synthesized by flash vacuum thermolysis (FVT) by using two different precursors in each case. These compounds were deposited at 50 K at a pressure of ca. 10(-6) mbar together with three different nucleophiles, namely, trimethylamine (TMA), dimethylamine (DMA), and diethylamine (DEA), in order to study their reactions as neat solids during warm-up by FTIR spectroscopy.
View Article and Find Full Text PDFHC 5N adsorbed on amorphous water ice at 10 K presents an interaction with the ice surface and induces the restructuring of the ice amorphous bulk. Warming up the sample induces the HC 5N desorption from the H 2O ice film, between 120 and 160 K, and the associated desorption energy is 90 kJ/mol. This value is in good agreement with that calculated E d (80 kJ/mol) and gives evidence that the amorphous ice surface is essentially dynamic.
View Article and Find Full Text PDFProducts of the vacuum-UV photolysis of cyanodiacetylene (HC(5)N) in solid argon -- the anion C(5)N(-), imine HNC(5), and the branched carbene C(4)(H)CN -- have been identified by IR absorption spectroscopy, in addition to the already discovered isonitrile HC(4)NC. Spectral assignments were assisted by deuterium substitution experiments, by BD(T) calculations, and by the results of a recent density functional theory study.
View Article and Find Full Text PDFThe structures and energies of the 1:1 HC5N:H2O complexes in solid argon matrices have been investigated using FTIR spectroscopy and ab initio calculations, at the B3LYP/6-31G** and MP2/6-31G** levels of theory. Two types of 1:1 complexes are observed. The first one corresponds to the NH structure characterized by a hydrogen bond between H2O and the nitrogen of HC5N.
View Article and Find Full Text PDFFollowing the measurements of UV and mid-IR spectra of cyanodiacetylene, H-(CC)2-CN, isolated in low temperature Ar matrices, the first photochemical study on this compound and on its 2H isotopomer was carried out with the laser light tuned to 267 nm and with far-UV discharge lamps. Evidence for the formation of isocyanodiacetylene, H-(CC)2-NC, was found in infrared absorption spectra interpreted with the aid of available theoretical predictions.
View Article and Find Full Text PDFDicyanoacetylene adsorbed on amorphous ice water at 10 K presents an interaction with the dangling H site and induces a s(4) adsorption site formation due to the restructuring of the ice bulk. Warming up the sample provokes the dicyanoacetylene desorption from the H(2)O ice film, which could be due to the beginning of the ice crystallization process. The desorption activation energy measured by temperature-programmed desorption (E(d) = 42 +/- 5 kJ x mol(-1)) is in good agreement with that calculated (E(d) = 46 kJ x mol(-1)) and gives evidence of a hydrogen-bonded adsorbed state on amorphous ice films.
View Article and Find Full Text PDFIR spectroscopy is coupled with the matrix isolation technique to study the reaction of trimethylsilylketene with HCl. From 50 K trimethylsilylketene reacts with hydrogen chloride, leading to the cleavage of the Si-C bond and the formation of trimethylsilyl chloride and acetyl chloride, through intermediate trimethylsilylacetyl chloride which was identified. A reaction profile for this result is proposed based on a theoretical study carried out at the DFT level.
View Article and Find Full Text PDFPhotoreactivity of cyanoacetylene with water was successively studied in cryogenic matrixes and in the solid phase at lambda > 120 nm. These studies were performed using FTIR spectroscopy, isotopic experiments and DFT calculations at the B3LYP/6-31G level of theory. The photolysis of cyanoacetylene complexed with water in an argon cryogenic matrix led to the formation of two products.
View Article and Find Full Text PDFLaboratory experiments involving ultraviolet (UV) irradiation of dicyanoacetylene (C(4)N(2)) trapped in water ice at 10 K have been conducted and monitored by infrared spectroscopy (FTIR). By the support of isotopic experiments and theoretical calculations, the irradiation of a DCA/H(2)O ice mixture at lambda > 230 nm has been found to be a possible source of NH(4)(+)HCO(3)(-) (ammonium bicarbonate) and NH(4)(+)HCOO(-) (ammonium formate). These latter compounds can arise from a proton-transfer reaction between H(2)O and the CN radical, which is issued from photolyzed C(4)N(2).
View Article and Find Full Text PDF