Ecosystems respond in various ways to disturbances. Quantifying ecological stability therefore requires inspecting multiple stability properties, such as resistance, recovery, persistence and invariability. Correlations among these properties can reduce the dimensionality of stability, simplifying the study of environmental effects on ecosystems.
View Article and Find Full Text PDFIncreasing human pressure on strongly defaunated ecosystems is characteristic of the Anthropocene and calls for proactive restoration approaches that promote self-sustaining, functioning ecosystems. However, the suitability of novel restoration concepts such as trophic rewilding is still under discussion given fragmentary empirical data and limited theory development. Here, we develop a theoretical framework that integrates the concept of 'ecological memory' into trophic rewilding.
View Article and Find Full Text PDFAcross the globe, invasive alien species cause severe environmental changes, altering species composition and ecosystem functions. So far, mountain areas have mostly been spared from large-scale invasions. However, climate change, land-use abandonment, the development of tourism and the increasing ornamental trade will weaken the barriers to invasions in these systems.
View Article and Find Full Text PDF1. Climate change and extreme events, such as drought, threaten ecosystems worldwide and in particular mountain ecosystems, where species often live at their environmental tolerance limits. In the European Alps, plant communities are also influenced by land-use abandonment leading to woody encroachment of subalpine and alpine grasslands.
View Article and Find Full Text PDFAim: Current interest in forecasting changes to species ranges have resulted in a multitude of approaches to species distribution models (SDMs). However, most approaches include only a small subset of the available information, and many ignore smaller-scale processes such as growth, fecundity, and dispersal. Furthermore, different approaches often produce divergent predictions with no simple method to reconcile them.
View Article and Find Full Text PDFAlthough our knowledge on the stabilising role of biodiversity and on how it is affected by perturbations has greatly improved, we still lack a comprehensive view on ecosystem stability that is transversal to different habitats and perturbations. Hence, we propose a framework that takes advantage of the multiplicity of components of an ecosystem and their contribution to stability. Ecosystem components can range from species or functional groups, to different functional traits, or even the cover of different habitats in a landscape mosaic.
View Article and Find Full Text PDFVegetation is a key driver of ecosystem functioning (. productivity and stability) and of the maintenance of biodiversity (. creating habitats for other species groups).
View Article and Find Full Text PDFSpecies distribution models (SDMs) have been frequently employed to forecast the response of alpine plants to global changes. Efforts to model alpine plant distribution have thus far been primarily based on a correlative approach, in which ecological processes are implicitly addressed through a statistical relationship between observed species occurrences and environmental predictors. Recent evidence, however, highlights the shortcomings of correlative SDMs, especially in alpine landscapes where plant species tend to be decoupled from atmospheric conditions in micro-topographic habitats and are particularly exposed to geomorphic disturbances.
View Article and Find Full Text PDFAim: Metacommunity theories attribute different relative degrees of importance to dispersal, environmental filtering, biotic interactions and stochastic processes in community assembly, but the role of spatial scale remains uncertain. Here we used two complementary statistical tools to test: (1) whether or not the patterns of community structure and environmental influences are consistent across resolutions; and (2) whether and how the joint use of two fundamentally different statistical approaches provides a complementary interpretation of results.
Location: Grassland plants in the French Alps.
During the last decade, despite strenuous efforts to develop new models and compare different approaches, few conclusions have been drawn on their ability to provide robust biodiversity projections in an environmental change context. The recurring suggestions are that models should explicitly (i) include spatiotemporal dynamics; (ii) consider multiple species in interactions and (iii) account for the processes shaping biodiversity distribution. This article presents a biodiversity model (FATE-HD) that meets this challenge at regional scale by combining phenomenological and process-based approaches and using well-defined plant functional groups.
View Article and Find Full Text PDFThe pace of on-going climate change calls for reliable plant biodiversity scenarios. Traditional dynamic vegetation models use plant functional types that are summarized to such an extent that they become meaningless for biodiversity scenarios. Hybrid dynamic vegetation models of intermediate complexity (hybrid-DVMs) have recently been developed to address this issue.
View Article and Find Full Text PDFAlthough abiotic factors, together with dispersal and biotic interactions, are often suggested to explain the distribution of species and their abundances, species distribution models usually focus on abiotic factors only. We propose an integrative framework linking ecological theory, empirical data and statistical models to understand the distribution of species and their abundances together with the underlying community assembly dynamics. We illustrate our approach with 21 plant species in the French Alps.
View Article and Find Full Text PDFMany species are projected to become vulnerable to twenty-first-century climate changes, with consequent effects on the tree of life. If losses were not randomly distributed across the tree of life, climate change could lead to a disproportionate loss of evolutionary history. Here we estimate the consequences of climate change on the phylogenetic diversities of plant, bird and mammal assemblages across Europe.
View Article and Find Full Text PDF