The Abraham and NRTL-SAC semipredictive models were employed to represent the solubility of (-)-borneol, (1R)-(+)-camphor, l-(-)-menthol, and thymol in water and organic solvents, using data measured in this work and collected from the literature. A reduced set of solubility data was used to estimate the model parameters of the solutes, and global average relative deviations (ARDs) of 27% for the Abraham model and 15% for the NRTL-SAC model were obtained. The predictive capability of these models was tested by estimating the solubilities in solvents not included in the correlation step.
View Article and Find Full Text PDFCountercurrent and centrifugal partition chromatography are techniques applied in the separation and isolation of compounds from natural extracts. One of the key design parameters of these processes is the selection of the biphasic solvent system that provides for the adequate partitioning of the solutes. To address this challenging task, the fully predictive Conductor-like Screening Model for Real Solvents (COSMO-RS) and the semi-predictive Non-Random Two-Liquid Segment Activity Coefficient (NRTL-SAC) model were applied to estimate the partition coefficients (K) of four model phenolic compounds (vanillin, ferulic acid, (S)-hesperetin and quercetin) in different solvent systems.
View Article and Find Full Text PDF