Publications by authors named "Isabella Romer"

Nanoparticles have been incorporated into a range of consumer spray products, providing the potential for inadvertent inhalation by users and bystanders. The levels and characteristics of nanoparticle inhalation exposures arising from the use of such products are important inputs to risk assessments and informing dose regimes for and studies investigating hazard potentials. To date, only a small number of studies have been undertaken to explore both the aerosols generated from such products and the metal nanoparticles within them.

View Article and Find Full Text PDF

Background: Engineered nanoparticles (NPs) have been shown to enhance allergic airways disease in mice. However, the influence of the different physicochemical properties of these particles on their adjuvant properties is largely unknown. Here we investigate the effects of chemical composition and redox activity of poorly soluble NPs on their adjuvant potency in a mouse model of airway hypersensitivity.

View Article and Find Full Text PDF

Cerium dioxide nanoparticles (CeONPs) have been used as diesel fuel-borne catalysts for improved efficiency and pollutant emissions. Concerns that such material may influence diesel exhaust particle (DEP) effects within the lung upon inhalation, prompted us to examine particle responses in mice in the presence and absence of the common allergen house dust mite (HDM). Repeated intranasal instillation of combined HDM and DEP increased airway mucin, eosinophils, lymphocytes, IL-5, IL-13, IL-17A and plasma IgE, which were further increased with CeONPs co-exposure.

View Article and Find Full Text PDF

The class of peroxo-cerium-containing polyoxometalates has been discovered via the synthesis of the 9-peroxo-6-cerium(IV)-containing 30-tungsto-3-germanate, [Ce(O)(GeWO)] (). Polyanion consists of a cyclic [Ce(O)] assembly that is stabilized by three dilacunary [GeWO] Keggin fragments. The title polyanion is solution-stable, on the basis of W nuclear magnetic resonance, and was shown to act as a recyclable homogeneous catalyst for the selective, microwave-activated sulfoxidation of the model substrate methionine to the sulfoxide in the absence and to the sulfone in the presence of hydrogen peroxide.

View Article and Find Full Text PDF

The potential hazard posed by nanomaterials can be significantly influenced by transformations which these materials undergo during their lifecycle, from manufacturing through to disposal. The transformations may depend on the nanomaterials' own physicochemical properties as well as the environment they are exposed to. This study focuses on the mechanisms of transformation of cerium oxide nanoparticles (CeO2 NPs) in laboratory experiments which simulate potential scenarios in which the NPs are exposed to phosphate-bearing media.

View Article and Find Full Text PDF

The large amount of existing nanomaterials demands rapid and reliable methods for testing their potential toxicological effect on human health, preferably by means of relevant in vitro techniques in order to reduce testing on animals. Combining high throughput workflows with automated high content imaging techniques allows deriving much more information from cell-based assays than the typical readouts (i.e.

View Article and Find Full Text PDF

The increasing production of Ag nanoparticle (AgNP) containing products has inevitably led to a growing concern about their release into the aquatic environment, along with their potential behaviour, toxicity, and bioaccumulation in marine organisms exposed to NPs released from these products. Hence, this study is focused on the effects of AgNPs in Saccostrea glomerata (rock oyster) in artificial seawater (ASW); evaluating the NP's stability, dissolution, and bioaccumulation rate. AgNPs NM300K (20 ± 5 nm) in concentrations of 12.

View Article and Find Full Text PDF

Cerium oxide nanoparticles (CeONPs), used in some diesel fuel additives to improve fuel combustion efficiency and exhaust filter operation, have been detected in ambient air and concerns have been raised about their potential human health impact. The majority of CeONP inhalation studies undertaken to date have used aerosol particles of larger sizes than the evidence suggests are emitted from vehicles using such fuel additives. Hence, the objective of this study was to investigate the effects of inhaled CeONP aerosols of a more environmentally relevant size, utilizing a combination of methods, including untargeted multi-omics to enable the broadest possible survey of molecular responses and synchrotron X-ray spectroscopy to investigate cerium speciation.

View Article and Find Full Text PDF

Considerable differences in pulmonary responses have been observed in animals exposed to cerium dioxide nanoparticles via inhalation. These differences in pulmonary toxicity might be explained by differences in lung deposition, species susceptibility or physicochemical characteristics of the tested cerium dioxide nanoforms (i.e.

View Article and Find Full Text PDF

Background: Nanomaterial inhalation represents a potential hazard for respiratory conditions such as asthma. Cerium dioxide nanoparticles (CeONPs) have the ability to modify disease outcome but have not been investigated for their effect on models of asthma and inflammatory lung disease. The aim of this study was to examine the impact of CeONPs in a house dust mite (HDM) induced murine model of asthma.

View Article and Find Full Text PDF

Experimental modeling to identify specific inhalation hazards for nanomaterials has in the main focused on in vivo approaches. However, these models suffer from uncertainties surrounding species-specific differences and cellular targets for biologic response. In terms of pulmonary exposure, approaches which combine 'inhalation-like' nanoparticulate aerosol deposition with relevant human cell and tissue air-liquid interface cultures are considered an important complement to in vivo work.

View Article and Find Full Text PDF

The sonication process is commonly used for de-agglomerating and dispersing nanomaterials in aqueous based media, necessary to improve homogeneity and stability of the suspension. In this study, a systematic step-wise approach is carried out to identify optimal sonication conditions in order to achieve a stable dispersion. This approach has been adopted and shown to be suitable for several nanomaterials (cerium oxide, zinc oxide, and carbon nanotubes) dispersed in deionized (DI) water.

View Article and Find Full Text PDF

Development and manufacture of nanomaterials is growing at an exponential rate, despite an incomplete understanding of how their physicochemical characteristics affect their potential toxicity. Redox activity has been suggested to be an important physicochemical property of nanomaterials to predict their biological activity. This study assessed the influence of redox activity by modification of cerium dioxide nanoparticles (CeO NPs) via zirconium (Zr) doping on the biodistribution, pulmonary and cardiovascular effects in mice following inhalation.

View Article and Find Full Text PDF

Some nanoparticles (NPs) may induce adverse health effects in exposed organisms, but to date the evidence for this in wildlife is very limited. Silver nanoparticles (AgNPs) can be toxic to aquatic organisms, including fish, at concentrations relevant for some environmental exposures. We applied whole mount in-situ hybridisation (WISH) in zebrafish embryos and larvae for a suite of genes involved with detoxifying processes and oxidative stress, including metallothionein (mt2), glutathionine S-transferase pi (gstp), glutathionine S-transferase mu (gstm1), haem oxygenase (hmox1) and ferritin heavy chain 1 (fth1) to identify potential target tissues and effect mechanisms of AgNPs compared with a bulk counterpart and ionic silver (AgNO3).

View Article and Find Full Text PDF

Nanoparticles (NPs) are defined as particles with at least one dimension between 1 and 100 nm or with properties that differ from their bulk material, which possess unique properties. The extensive use of NPs means that discharge to the environment is likely increasing, but fate, behavior, and effects under environmentally relevant conditions are insufficiently studied. This paper focuses on the transformations of silver nanoparticles (AgNPs) under simulated but realistic environmental conditions.

View Article and Find Full Text PDF

A new class of hexameric Ln12 -containing 60-tungstogermanates, [Na(H2 O)6 ⊂Eu12 (OH)12 (H2 O)18 Ge2 (GeW10 O38 )6 ](39-) (Eu12 ), [Na(H2 O)6 ⊂Gd12 (OH)6 (H2 O)24 Ge(GeW10 O38 )6 ](37-) (Gd12 ), and [(H2 O)6 ⊂Dy12 (H2 O)24 (GeW10 O38 )6 ](36-) (Dy12 ), comprising six di-Ln-embedded {β(4,11)-GeW10 } subunits was prepared by reaction of [α-GeW9 O34 ](10-) with Ln(III) ions in weakly acidic (pH 5) aqueous medium. Depending on the size of the Ln(III) ion, the assemblies feature selective capture of two (for Eu12 ), one (for Gd12 ), or zero (for Dy12 ) extra Ge(IV) ions. The selective encapsulation of a cationic sodium hexaaqua complex [Na(H2 O)6 ](+) was observed for Eu12 and Gd12 , whereas Dy12 incorporates a neutral, distorted-octahedral (H2 O)6 cluster.

View Article and Find Full Text PDF

The release of Ag nanoparticles (AgNPs) into the aquatic environment is likely, but the influence of water chemistry on their impacts and fate remains unclear. Here, we characterize the bioavailability of Ag from AgNO(3) and from AgNPs capped with polyvinylpyrrolidone (PVP AgNP) and thiolated polyethylene glycol (PEG AgNP) in the freshwater snail, Lymnaea stagnalis, after short waterborne exposures. Results showed that water hardness, AgNP capping agents, and metal speciation affected the uptake rate of Ag from AgNPs.

View Article and Find Full Text PDF

Silver nanoparticles (AgNPs) are widely used in many applications and likely released into the aquatic environment. There is increasing evidence that Ag is efficiently delivered to aquatic organisms from AgNPs after aqueous and dietary exposures. Accumulation of AgNPs through the diet can damage digestion and adversely affect growth.

View Article and Find Full Text PDF

Due to the widespread use of silver nanoparticles (AgNPs), the likelihood of them entering the environment has increased and they are known to be potentially toxic. Currently, there is little information on the dynamic changes of AgNPs in ecotoxicity exposure media and how this may affect toxicity. Here, the colloidal stability of three different sizes of citrate-stabilized AgNPs was assessed in standard strength OECD ISO exposure media, and in 2-fold (media2) and 10-fold (media10) dilutions by transmission electron microscopy (TEM) and atomic force microscopy (AFM) and these characteristics were related to their toxicity towards Daphnia magna.

View Article and Find Full Text PDF

Silver nanoparticles (AgNPs) are present in the environment and a number of ecotoxicology studies have shown that AgNPs might be highly toxic. Nevertheless, there are little data on their stability in toxicology media. This is an important issue as such dynamic changes affect exposure dose and the nature of the toxicant studied and have a direct impact on all (eco)toxicology data.

View Article and Find Full Text PDF

Silver nanoparticles (AgNPs) are currently being very widely used in industry, mainly because of their anti-bacterial properties, with applications in many areas. Once released into the environment, the mobility, bioavailability, and toxicity of AgNPs in any ecosystem are dominated by colloidal stability. There have been studies on the stability or the aggregation of various nanoparticles (NPs) under a range of environmental conditions, but there is little information on fully characterised AgNPs in media used in (eco)toxicity studies.

View Article and Find Full Text PDF