Publications by authors named "Isabella Orienti"

Colon adenocarcinoma is characterized by the downregulation of the retinoic acid receptor, making natural retinoids such as all-trans retinoic acid, 9-cis retinoic acid and 13-cis retinoic acid effective in treatment and chemoprevention due to their ability to increase RARβ expression. However, major limitations to their use include tolerability and acquired resistance. In this study, we evaluated fenretinide, a semisynthetic derivative of all-trans retinoic acid, in an HT-29 cell line.

View Article and Find Full Text PDF

Background: Prevention and treatment of metastatic breast cancer (BC) is an unmet clinical need. The retinoic acid derivative fenretinide (FeR) was previously evaluated in Phase I-III clinical trials but, despite its excellent tolerability and antitumor activity in preclinical models, showed limited therapeutic efficacy due to poor bioavailability. We recently generated a new micellar formulation of FeR, Bionanofenretinide (Bio-nFeR) showing enhanced bioavailability, low toxicity, and strong antitumor efficacy on human lung cancer, colorectal cancer, and melanoma xenografts.

View Article and Find Full Text PDF

Acute promyelocytic leukemia (APL) is characterized by rearrangements of the retinoic acid receptor, RARα, which makes all-trans retinoic acid (ATRA) highly effective in the treatment of this disease, inducing promyelocytes differentiation. Current therapy, based on ATRA in combination with arsenic trioxide, with or without chemotherapy, provides high rates of event-free survival and overall survival. However, a decline in the drug activity, due to increased ATRA metabolism and RARα mutations, is often observed over long-term treatments.

View Article and Find Full Text PDF

We describe the development and validation of a HPLC-MS/MS method to assess the pharmacokinetics and tumor distribution of fenretinide, a synthetic retinoid chemically related to all-trans-retinoic acid, after administration of a novel oral nanoformulation of fenretinide, called bionanofenretinide (BNF). BNF was developed to overcome the major limitation of fenretinide: its poor aqueous solubility and bioavailability due to its hydrophobic nature. The method proved to be reproducible, precise and highly accurate for the measurement of the drug and the main metabolites.

View Article and Find Full Text PDF

Neuroblastoma cells highly express the disialoganglioside GD2, a tumor-associated carbohydrate antigen, which is also expressed in neurons, skin melanocytes, and peripheral nerve fibers. Immunotherapy with monoclonal anti-GD2 antibodies has a proven efficacy in clinical trials and is included in the standard treatment for children with high-risk neuroblastoma. However, the strong neuro-toxicity associated with anti-GD2 antibodies administration has hindered, until now, the possibility for dose-escalation and protracted use, thus restraining their therapeutic potential.

View Article and Find Full Text PDF

Recently, several chemotherapeutic drugs have been repositioned in neurological diseases, based on common biological backgrounds and the inverse comorbidity between cancer and neurodegenerative diseases. Fenretinide (all-trans-N-(4-hydroxyphenyl) retinamide, 4-HPR) is a synthetic derivative of all-trans-retinoic acid initially proposed in anticancer therapy for its antitumor effects combined with limited toxicity. Subsequently, fenretinide has been proposed for other diseases, for which it was not intentionally designed for, due to its ability to influence different biological pathways, providing a broad spectrum of pharmacological effects.

View Article and Find Full Text PDF

A new strategy to cause cell death in tumors might be the increase of intracellular polyamines at concentrations above their physiological values to trigger the production of oxidation metabolites at levels exceeding cell tolerance. To test this hypothesis, we prepared nanospermidine as a carrier for spermidine penetration into the cells, able to escape the polyamine transport system that strictly regulates intracellular polyamine levels. Nanospermidine was prepared by spermidine encapsulation in nanomicelles and was characterized by size, zeta potential, loading, dimensional stability to dilution, and stability to spermidine leakage.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is the most frequent motor neuron disease for which effective treatment options are still lacking. ALS occurs in sporadic and familial forms which are clinically indistinguishable; about 20% of familial ALS cases are linked to mutations of the superoxide dismutase 1 (SOD1) gene. Fenretinide (FEN), a cancer chemopreventive and antiproliferative agent currently used in several clinical trials, is a multi-target drug which also exhibits redox regulation activities.

View Article and Find Full Text PDF

Purpose: In a previous study, we demonstrated that the combination of fenretinide with lenalidomide, administered by a novel nanomicellar formulation (FLM), provided a strong antitumor effect in a neuroblastoma TrkB-expressing tumor. In this study, we tested the nanomicellar combination in an amplified neuroblastoma xenograft to assess its efficacy in different tumor genotypes and evaluate the interactions of the nanomicelles with the tumor cells.

Experimental Design: FLM was administered to mice bearing human NLF xenografts to evaluate its efficacy in comparison with the nanomicelles containing fenretinide alone (FM).

View Article and Find Full Text PDF

At present, there is no vaccine or effective standard treatment for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection (or coronavirus disease-19 (COVID-19)), which frequently leads to lethal pulmonary inflammatory responses. COVID-19 pathology is characterized by extreme inflammation and amplified immune response with activation of a cytokine storm. A subsequent progression to acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) can take place, which is often followed by death.

View Article and Find Full Text PDF

Purpose: Currently >50% of high-risk neuroblastoma (NB) patients, despite intensive therapy and initial partial or complete response, develop recurrent NB due to the persistence of minimal residual disease (MRD) that is resistant to conventional antitumor drugs. Indeed, their low therapeutic index prevents drug-dose escalation and protracted administration schedules, as would be required for MRD treatment. Thus, more effective and less toxic therapies are urgently needed for the management of MRD.

View Article and Find Full Text PDF

Objectives: This study investigated the antitumor effect of a new nanomicellar complex obtained by combining the antitumor agent fenretinide with a quaternary amphiphilic amine RC16+ also endowed with antitumor activity.

Methods: The complex (Fen-RC16+) strongly improved the aqueous solubility of fenretinide (from 1,71 ± 0.08 µg/ml, pure fenretinide to 1500 ± 164 µg /ml, Fen-RC16+ complex) and provided a cytotoxic effect on SH-SY5Y neuroblastoma cell lines resulting from the intrinsic activity of both the complex components.

View Article and Find Full Text PDF

Background: An increasing number of anticancer agents has been proposed in recent years with the attempt to overcome treatment-resistant cancer cells and particularly cancer stem cells (CSC), the major culprits for tumour resistance and recurrence. However, a huge obstacle to treatment success is the ineffective delivery of drugs within the tumour environment due to limited solubility, short circulation time or inconsistent stability of compounds that, together with concomitant dose-limiting systemic toxicity, contribute to hamper the achievement of therapeutic drug concentrations. The synthetic retinoid Fenretinide (4-hydroxy (phenyl)retinamide; 4-HPR) formerly emerged as a promising anticancer agent based on pre-clinical and clinical studies.

View Article and Find Full Text PDF

Fenretinide is a synthetic retinoid characterized by anticancer activity in preclinical models and favorable toxicological profile, but also by a low bioavailability that hindered its clinical efficacy in former clinical trials. We developed a new formulation of fenretinide complexed with 2-hydroxypropyl-beta-cyclodextrin (nanofenretinide) characterized by an increased bioavailability and therapeutic efficacy. Nanofenretinide was active in cell lines derived from multiple solid tumors, in primary spheroid cultures and in xenografts of lung and colorectal cancer, where it inhibited tumor growth independently from the mutational status of tumor cells.

View Article and Find Full Text PDF

Purpose: We describe a novel class of antitumor amphiphilic amines (RCn) based on a tricyclic amine hydrophilic head and a hydrophobic linear alkyl tail of variable length.

Methods: We tested the lead compound, RC16, for cytotoxicity and mechanism of cell death in several cancer cell lines, anti tumor efficacy in mouse tumor models, and ability to encapsulate chemotherapy drugs.

Results: These compounds displayed strong cytotoxic activity against cell lines derived from both pediatric and adult cancers.

View Article and Find Full Text PDF

Articular cartilage is a highly organized tissue with complex biomechanical properties. However, injuries to the cartilage usually lead to numerous health concerns and often culminate in disabling symptoms, due to the poor intrinsic capacity of this tissue for self-healing. Although various approaches are proposed for the regeneration of cartilage, its repair still represents an enormous challenge for orthopedic surgeons.

View Article and Find Full Text PDF

Unlabelled: The present study deals with the preparation of albumin nanocapsules containing fenretinide and their evaluation in experimental models of human non-small cell lung cancer. These nanocapsules showed enhanced antitumor activity with respect to free fenretinide due to the solubilization effect of albumin on the hydrophobic drug, known to improve bioavailability. The high expression of caveolin-1 on the A549 cell surface further enhanced the antitumor activity of the nanoencapsulated fenretinide.

View Article and Find Full Text PDF

Sufficient knowledge regarding cellular and molecular basis of lung cancer progression and metastasis would help in the development of novel and effective strategies for the treatment of lung cancer. 4HPR is a synthetic retinoid with potential anti-tumor activity but is still limited because of its poor bioavailability. The use of albumin as a complexing agent for a hydrophobic drug is expected to improve the water solubility and consequently their bioavailability.

View Article and Find Full Text PDF

Novel polylactide (PLA) microspheres endowed with hydrophilic and bioadhesive surfaces as injectable formulations for the controlled release of fenretinide were prepared, using a novel technique based on the co-precipitation of PLA with gelatin, at the interface of a liquid dispersion formed by the addition of N-methylpyrrolidone containing PLA and dextrin (DX), towards an aqueous solution of gelatin (G). The resulting PLA-G-DX microspheres were compared with others prepared by the same technique using polylactide-co-glycolide (PLGA), with or without DX, and with or without phosphatidylcholine. Of the different systems, the PLA-G-DX microspheres had the best morphological, dimensional and functional characteristics.

View Article and Find Full Text PDF

Objectives: The major limitation to successful chemotherapy of neuroblastoma (NB) is the toxicity and the poor bioavailability of traditional drugs.

Methods: We synthesised an amphiphilic dextrin derivative (DX-OL) able to host fenretinide (4-HPR) by complexation. In this study, we have investigated the effects of 4-HPR-loaded amphipilic dextrin (DX-OL/4-HPR) in comparison with 4-HPR alone both in vitro on human NB cells and in vivo in pseudometastatic NB models.

View Article and Find Full Text PDF

This study reports on the preparation and evaluation of amphiphilic macromolecules based on branched polyethylene glycol covalently linked with alkyl hydrocarbon chains. These macromolecules easily dissolved in an aqueous environment, with formation of micellar nanoaggregates endowed with hydrophobic inner cores capable of hosting fenretinide by complexation. The complexes increased fenretinide aqueous solubility, while hindering its release as a free drug in an aqueous environment.

View Article and Find Full Text PDF

Background: Neuroblastoma (NB) is an extra-cranial solid tumour of childhood. In spite of the good clinical response to first-line therapy, complete eradication of NB cells is rarely achieved. Thus, new therapeutic strategies are needed to eradicate surviving NB cells and prevent relapse.

View Article and Find Full Text PDF

Purpose: The major limitation to successful chemotherapy of neuroblastoma is the toxicity of traditional antitumor drugs. Hence, less toxic and more effective drugs are to be found, and novel formulations of conventional compounds allowing a more favorable biodistribution should be sought for. In an attempt to pursue this task, we recently synthesized an amphiphilic polymer based on a polyvinyl alcohol backbone [P10(4)].

View Article and Find Full Text PDF

The objective of this study was to evaluate the in vitro characteristics of polyvinylalcohol 10,000 (PVA10,000) and polyvinylalcohol 15,000 (PVA15,000) substituted with different alkyl chains (Iodododecane, Bromotetradecane) and crosslinked with Bis-chloro-ethoxy-ethane as an injectable drug carrier. beta-carotene was used as a lipophilic model drug. Physical mixtures of the drug and the spray-dried polymers were prepared and the release of the drug from the mixtures was evaluated in vitro at pH 7.

View Article and Find Full Text PDF

Delivery of drugs to the large bowel has been extensively investigated during the last decade. The aim of this work was to study polymethacrylic acid-co-methylmethacrylate substituted with fatty acids (lauric, myristic, palmitic and stearic) at 20% substitution degree (PMA-LAUR20, PMA-MIR20, PMA-PALM20 and PMA-STEA20) or 40% substitution degree (PMA-LAUR40, PMA-MIR40, PMA-PALM40 and PMA-STEA40) for preparing a pH-sensitive physical mixture for site-specific delivery of ibuprofen chosen as a model drug. The preparation and characterization of the substituted polymers were described.

View Article and Find Full Text PDF