Access to therapeutic strategies that counter cellular stress induced by reactive oxygen species (ROS) is an important, long-standing challenge. Here, the assembly of antioxidant artificial cells is based on alginate hydrogels equipped with non-native catalysts, namely platinum nanoparticles and an EUK compound. These artificial cells are able to preserve the viability and lower the intracellular ROS levels of challenged hepatic cells by removing peroxides from the extracellular environment.
View Article and Find Full Text PDFCellular communication is a fundamental feature to ensure the survival of cellular assemblies, such as multicellular tissue, via coordinated adaption to changes in their surroundings. Consequently, the development of integrated semi-synthetic systems consisting of artificial cells (ACs) and mammalian cells requires feedback-based interactions. Here, we illustrate that ACs can eavesdrop on HepG2 cells focusing on the activity of cytochrome P450 1A2 (CYP1A2), an enzyme from the cytochrome P450 enzyme family.
View Article and Find Full Text PDFCatalyzing biochemical reactions with enzymes and communicating with neighboring cells via chemical signaling are two fundamental cellular features that play a critical role in maintaining the homeostasis of organisms. Herein, we present an artificial enzyme (AE) facilitated signal transfer between artificial cells (ACs) and mammalian HepG2 cells. We synthesize metalloporphyrins (MPs) based AEs that mimic cytochrome P450 enzymes (CYPs) to catalyze a dealkylation and a hydroxylation reaction, exemplified by the conversion of resorufin ethyl ether (REE) to resorufin and coumarin (COU) to 7-hydroxycoumarin (7-HC), respectively.
View Article and Find Full Text PDFArtificial cells (ACs) aim to mimic selected structural and functional features of mammalian cells. In this context, energy generation is an important challenge to be addressed when self-sustained systems are desired. Here, mitochondria isolated from HepG2 cells are employed as natural subunits that facilitate chemically driven adenosine triphosphate (ATP) synthesis.
View Article and Find Full Text PDFWiley Interdiscip Rev Nanomed Nanobiotechnol
May 2021
Artificial biology is an emerging concept that aims to design and engineer the structure and function of natural cells, organelles, or biomolecules with a combination of biological and abiotic building blocks. Cell mimicry focuses on concepts that have the potential to be integrated with mammalian cells and tissue. In this feature article, we will emphasize the advancements in the past 3-4 years (2017-present) that are dedicated to artificial enzymes, artificial organelles, and artificial mammalian cells.
View Article and Find Full Text PDF