Publications by authors named "Isabella Mathes"

In the intermembrane space (IMS) of mitochondria, the receptor domain of Tim23 has an essential role during translocation of hundreds of different proteins from the cytosol via the TOM and TIM23 complexes in the outer and inner membranes, respectively. This intrinsically disordered domain, which can even extend into the cytosol, was shown, mostly in vitro, to interact with several subunits of the TOM and TIM23 complexes. To obtain molecular understanding of this organizational hub in the IMS, we dissected the IMS domain of Tim23 in vivo.

View Article and Find Full Text PDF

Mitochondrial oxidative phosphorylation provides most cellular energy. As part of this process, cytochrome c oxidase (CcO) pumps protons across the inner mitochondrial membrane, contributing to the generation of the mitochondrial membrane potential, which is used by ATP synthase to produce ATP. During acute inflammation, as in sepsis, aerobic metabolism appears to malfunction and switches to glycolytic energy production.

View Article and Find Full Text PDF

Signaling pathways targeting mitochondria are poorly understood. We here examine phosphorylation by the cAMP-dependent pathway of subunits of cytochrome c oxidase (COX), the terminal enzyme of the electron transport chain. Using anti-phospho antibodies, we show that cow liver COX subunit I is tyrosinephosphorylated in the presence of theophylline, a phosphodiesterase inhibitor that creates high cAMP levels, but not in its absence.

View Article and Find Full Text PDF

The genome of Methanococcus maripaludis harbors genes for at least six selenocysteine-containing proteins and also for homologs that contain a cysteine codon in the position of the UGA selenocysteine codon. To investigate the synthesis and function of both the Se and the S forms, a mutant with an inactivated selB gene was constructed and analyzed. The mutant was unable to synthesize any of the selenoproteins, thus proving that the gene product is the archaeal translation factor (aSelB) specialized for selenocysteine insertion.

View Article and Find Full Text PDF