Multiple pathways regulate the repair of double-strand breaks (DSBs) to suppress potentially dangerous ectopic recombination. Both sequence and chromatin context are thought to influence pathway choice between non-homologous end-joining (NHEJ) and homology-driven recombination. To test the effect of repetitive sequences on break processing, we have inserted TG-rich repeats on one side of an inducible DSB at the budding yeast MAT locus on chromosome III.
View Article and Find Full Text PDFUnlabelled: SecA is an essential component of the Sec machinery in bacteria, which is responsible for transporting proteins across the cytoplasmic membrane. Recent work from our laboratory indicates that SecA binds to ribosomes. Here, we used two different approaches to demonstrate that SecA also interacts with nascent polypeptides in vivo and that these polypeptides are Sec substrates.
View Article and Find Full Text PDFHigh-resolution imaging shows that persistent DNA damage in budding yeast localizes in distinct perinuclear foci for repair. The signals that trigger DNA double-strand break (DSB) relocation or determine their destination are unknown. We show here that DSB relocation to the nuclear envelope depends on SUMOylation mediated by the E3 ligases Siz2 and Mms21.
View Article and Find Full Text PDFDNA Repair (Amst)
August 2015
Many proteins ligands are shared between double-strand breaks and natural chromosomal ends or telomeres. The structural similarity of the 3' overhang, and the efficiency of cellular DNA end degradation machineries, highlight the need for mechanisms that resect selectively to promote or restrict recombination events. Here we examine the means used by eukaryotic cells to suppress resection at telomeres, target telomerase to short telomeres, and process broken ends for appropriate repair.
View Article and Find Full Text PDFPersistent DNA double-strand breaks (DSBs) are recruited to the nuclear periphery in budding yeast. Both the Nup84 pore subcomplex and Mps3, an inner nuclear membrane (INM) SUN domain protein, have been implicated in DSB binding. It was unclear what, if anything, distinguishes the two potential sites of repair.
View Article and Find Full Text PDF