Small-for-gestational age (SGA) neonates exhibit increased perinatal morbidity and mortality, and a greater risk of developing chronic diseases in adulthood. Currently, no effective maternal blood-based screening methods for determining SGA risk are available. We used a high-resolution MS/MS shotgun lipidomic approach to explore the lipid profiles of small extracellular vesicles (sEV) released from the placenta into the circulation of pregnant individuals.
View Article and Find Full Text PDFDisturbances of lipid metabolism are typical in diabetes. Our objective was to characterize and compare placental sphingolipid metabolism in type 1 (T1D) and 2 (T2D) diabetic pregnancies and in non-diabetic controls. Placental samples from T1D, T2D, and control pregnancies were processed for sphingolipid analysis using tandem mass spectrometry.
View Article and Find Full Text PDFPreeclampsia (PE) is a major obstetric complication that is challenging to predict. Currently, there are limited tools to assess placental health/function in crucial gestational periods for diagnosis and early prediction. The glycoprotein fibronectin (FN) is augmented in PE placentae, and associated with reduced activity of JMJD6, an oxygen sensor that regulates placental FN processing.
View Article and Find Full Text PDFPreeclampsia is a serious pregnancy disorder that lacks effective treatments other than delivery. Improper sensing of oxygen changes during placentation by prolyl hydroxylases (PHDs), specifically PHD2, causes placental hypoxia-inducible factor-1 (HIF1) buildup and abnormal downstream signaling in early-onset preeclampsia, yet therapeutic targeting of HIF1 has never been attempted. Here we generated a conditional (placenta-specific) knockout of Phd2 in mice (Phd2-/- cKO) to reproduce HIF1 excess and to assess anti-HIF therapy.
View Article and Find Full Text PDFDynamic changes in physiologic oxygen are required for proper placenta development; yet, when low-oxygen levels persist, placental development is halted, culminating in preeclampsia (PE), a serious complication of pregnancy. Considering mitochondria's function is intimately linked to oxygen changes, we investigated the impact of oxygen on mitochondrial dynamics in placental mesenchymal stromal cells (pMSCs) that are vital for proper placental development. Transmission electron microscopy, proximity ligation assays for mitochondrial VDAC1 and endoplasmic reticulum IP3R, and immunoanalyses of p-DRP1 and OPA1, demonstrate that low-oxygen conditions in early 1st trimester and PE promote mitochondrial fission in pMSCs.
View Article and Find Full Text PDFThe mechanisms contributing to excessive fibronectin in preeclampsia, a pregnancy-related disorder, remain unknown. Herein, we investigated the role of JMJD6, an O- and Fe-dependent enzyme, in mediating placental fibronectin processing and function. MALDI-TOF identified fibronectin as a novel target of JMJD6-mediated lysyl hydroxylation, preceding fibronectin glycosylation, deposition, and degradation.
View Article and Find Full Text PDFAberrant ceramide build-up in preeclampsia, a serious disorder of pregnancy, causes exuberant autophagy-mediated trophoblast cell death. The significance of ceramide accumulation for lysosomal biogenesis in preeclampsia is unknown. Here we report that lysosome formation is markedly increased in trophoblast cells of early-onset preeclamptic placentae, in particular in syncytiotrophoblasts.
View Article and Find Full Text PDFObjective: Autophagy is a physiological self-eating process that can promote cell survival or activate cell death in eukaryotic cells. In skeletal muscle, it is important for maintaining muscle mass and function that is critical to sustain mobility and regulate metabolism. The UV radiation resistance-associated gene (UVRAG) regulates the early stages of autophagy and autophagosome maturation and plays a key role in endosomal trafficking.
View Article and Find Full Text PDFIntroduction: Gestational diabetes mellitus (GDM), a common pregnancy disorder, increases the risk of fetal overgrowth and later metabolic morbidity in the offspring. The placenta likely mediates these sequelae, but the exact mechanisms remain elusive. Mitochondrial dynamics refers to the joining and division of these organelles, in attempts to maintain cellular homeostasis in stress conditions or alterations in oxygen and fuel availability.
View Article and Find Full Text PDFCell death is an essential physiological process required for the proper development and function of the human placenta. Although the mouse is a commonly used animal model for development studies, little is known about the extent and distribution of cell death in the mouse placenta throughout development and its physiological relevance. In the present study, we report the results of a systematic and quantitative assessment of cell death patterns in the placentae of two strains of laboratory mice commonly used for developmental studies-ICR and C57Bl/6.
View Article and Find Full Text PDFHuman placenta development and a successful pregnancy is incumbent upon precise oxygen-dependent control of trophoblast migration/invasion. Persistent low oxygen leading to failed trophoblast invasion promotes inadequate spiral artery remodeling, a characteristic of preeclampsia. Angiomotin (AMOT) is a multifaceted scaffolding protein involved in cell polarity and migration, yet its upstream regulation and significance in the human placenta remain unknown.
View Article and Find Full Text PDFBackground: Decidual natural killer (dNK) cells are the predominant lymphocytes accumulated at the maternal-fetal interface. Regulatory mechanism of dNK cells in preeclampsia, a gestational complication characterized by high blood pressure and increased proteinuria occurring after 20 weeks pregnancy, is not completely understood.
Methods: Multi-parameter flow cytometry is applied to investigate the phenotype and function of dNK cells freshly isolated from decidual samples or conditionally cultured by TGFb stimulation.
Rationale: Premature infants subjected to mechanical ventilation (MV) are prone to lung injury that may result in bronchopulmonary dysplasia. MV causes epithelial cell death and halts alveolar development. The exact mechanism of MV-induced epithelial cell death is unknown.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
October 2018
The von Hippel Lindau tumour suppressor (VHL) protein is essential for proper placental development and is downregulated in preeclampsia (PE), a devastating disorder of pregnancy typified by chronic hypoxia. To date, knowledge on VHL genetic and epigenetic regulation is restricted to inactivating mutations and loss-of-heterozygosity in renal cell carcinomas. Herein, we sought to examine whether VHL DNA is subject to differential methylation, and if so, whether it is altered in early-onset PE (E-PE).
View Article and Find Full Text PDFMitochondria are in a constant balance of fusing and dividing in response to cellular cues. Fusion creates healthy mitochondria, whereas fission results in removal of non-functional organelles. Changes in mitochondrial dynamics typify several human diseases.
View Article and Find Full Text PDFContext: The von Hippel Lindau (VHL) protein is a key executor of the cellular hypoxic response that is compromised in preeclampsia, a serious disorder complicating 5% to 7% of pregnancies. To date, the mechanisms controlling VHL gene expression in the human placenta remain elusive.
Objective: We examined VHL epigenetic regulation in normal pregnancy and in preeclampsia, a pathology characterized by placental hypoxia.
Adaptations to changes in oxygen are critical to ensure proper placental development, and impairments in oxygen sensing mechanisms characterize placental pathologies such as preeclampsia. In this study, we examined the involvement of SUMOylation, a reversible posttranslational modification, in the regulation of the asparaginyl hydroxylase Factor Inhibiting Hypoxia Inducible Factor 1 (FIH1) in the human placenta in development and in disease status. FIH1 protein abundance and spatial distribution in the developing placenta directly correlated with oxygen tension .
View Article and Find Full Text PDFPreeclampsia (PE), an hypertensive disorder of pregnancy, exhibits increased circulating levels of a short form of the auxillary TGF-beta (TGFB) receptor endoglin (sENG). Until now, its release and functionality in PE remains poorly understood. Here we show that ENG selectively interacts with sphingomyelin(SM)-18:0 which promotes its clustering with metalloproteinase 14 (MMP14) in SM-18:0 enriched lipid rafts of the apical syncytial membranes from PE placenta where ENG is cleaved by MMP14 into sENG.
View Article and Find Full Text PDFMatrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (MALDI-MSI) allows us to investigate the distribution of lipid molecules within tissues. We used MALDI-MSI to identify prognostic gangliosides in tissue sections of rat intracranial allografts of rat glioma and mouse intracranial xenografts of human medulloblastoma. In the healthy adult rodent brain, GM1 and GD1 were the main types of glycolipids.
View Article and Find Full Text PDFDefective fetoplacental vascular maturation causes intrauterine growth restriction (IUGR). A transcriptional switch initiates placental maturation, during which blood vessels elongate. However, the cellular mechanisms and regulatory pathways involved are unknown.
View Article and Find Full Text PDFPreeclampsia, a serious hypertensive disorder of pregnancy, is characterized by elevated ceramide (CER) content that is responsible for heightened trophoblast cell death rates via apoptosis and autophagy. Whether trophoblast cells undergo necroptosis, a newly characterized form of regulated necrosis, and the potential role of CER in this process remain to be established. Herein, we report that exposure of both JEG3 cells and primary isolated cytotrophoblasts to C16:0 CER in conjunction with a caspase-8 inhibitor (Q-VD-OPh) promoted necroptotic cell death, as evidenced by increased expression and association of receptor-interacting protein kinases RIP1 and RIP3, as well as phosphorylation of mixed lineage kinase domain-like (MLKL) protein.
View Article and Find Full Text PDFIntroduction: Hypoxia-inducible factor 1A (HIF1A) stability is tightly regulated by hydroxylation and ubiquitination. Emerging evidence indicates that HIF1A is also controlled by the interplay between SUMO-specific ligases, which execute protein SUMOylation, and Sentrin/SUMO-specific proteases that de-SUMOylate target proteins. Given the significance of HIF1A in the human placenta, we investigated whether placental HIF1A is subject to SUMOylation in physiological and pathological conditions.
View Article and Find Full Text PDFThe mevalonate pathway synthesizes intermediates and products such as cholesterol and nonsterol isoprenoids that are crucial for cell survival and function. In the human placenta, the prenylation of proteins, rather than cholesterol synthesis, represents the main "metabolic target" of mevalonate metabolism. Major cellular functions depend on isoprenylation including proliferation, migration, metabolism and protein glycosylation that are all crucial for proper development of the embryo and the placenta.
View Article and Find Full Text PDF