Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with limited treatment options, illustrating an urgent need to identify new drugable targets in PDACs.
Objective: Using the similarities between tumor development and normal embryonic development, which is accompanied by rapid cell expansion, we aimed to identify and characterize embryonic signaling pathways that were reinitiated during tumor formation and expansion.
Methods And Results: Here, we report that the transcription factors E2F1 and E2F8 are potential key regulators in PDAC.
Aims/hypothesis: Roux-en-Y gastric bypass surgery (RYGB) frequently results in remission of type 2 diabetes as well as exaggerated secretion of glucagon-like peptide-1 (GLP-1). Here, we assessed RYGB-induced transcriptomic alterations in the small intestine and investigated how they were related to the regulation of GLP-1 production and secretion in vitro and in vivo.
Methods: Human jejunal samples taken perisurgically and 1 year post RYGB (n=13) were analysed by RNA-seq.
Hormone secretion from pancreatic islets is essential for glucose homeostasis, and loss or dysfunction of islet cells is a hallmark of type 2 diabetes. Maf transcription factors are crucial for establishing and maintaining adult endocrine cell function. However, during pancreas development, MafB is not only expressed in insulin- and glucagon-producing cells, but also in Neurog3+ endocrine progenitor cells, suggesting additional functions in cell differentiation and islet formation.
View Article and Find Full Text PDFAquaglyceroporin 7 (AQP7) facilitates glycerol flux across the plasma membrane with a critical physiological role linked to metabolism, obesity, and associated diseases. Here, we present the single-particle cryo-EM structure of AQP7 determined at 2.55 Å resolution adopting two adhering tetramers, stabilized by extracellularly exposed loops, in a configuration like that of the well-characterized interaction of AQP0 tetramers.
View Article and Find Full Text PDFType 1 diabetes (T1D) is an autoimmune disease that results in the destruction of insulin producing pancreatic β-cells. One of the genes associated with T1D is TYK2, which encodes a Janus kinase with critical roles in type-Ι interferon (IFN-Ι) mediated intracellular signalling. To study the role of TYK2 in β-cell development and response to IFNα, we generated TYK2 knockout human iPSCs and directed them into the pancreatic endocrine lineage.
View Article and Find Full Text PDFCharacterization of gene expression in pancreatic islets and its alteration in type 2 diabetes (T2D) are vital in understanding islet function and T2D pathogenesis. We leveraged RNA sequencing and genome-wide genotyping in islets from 188 donors to create the Islet Gene View (IGW) platform to make this information easily accessible to the scientific community. Expression data were related to islet phenotypes, diabetes status, other islet-expressed genes, islet hormone-encoding genes and for expression in insulin target tissues.
View Article and Find Full Text PDFPersons with type 2 diabetes born in the regions of famine exposures have disproportionally elevated risk of vision-threatening proliferative diabetic retinopathy (PDR) in adulthood. However, the underlying mechanisms are not known. In the present study, we aimed to investigate the plausible molecular factors underlying progression to PDR.
View Article and Find Full Text PDFContext: Anemia during early pregnancy (EP) is common in developing countries and is associated with adverse health consequences for both mothers and children. Offspring of women with EP anemia often have low birth weight, which increases risk for cardiometabolic diseases, including type 2 diabetes (T2D), later in life.
Objective: We aimed to elucidate mechanisms underlying developmental programming of adult cardiometabolic disease, including epigenetic and transcriptional alterations potentially detectable in umbilical cord blood (UCB) at time of birth.
Aims: Reduced expression of exocytotic genes is associated with functional defects in insulin exocytosis contributing to impaired insulin secretion and type 2 diabetes (T2D) development. MAFA and MAFB transcription factors regulate β-cell physiology, and their gene expression is reduced in T2D β cells. We investigate if loss of MAFA and MAFB in human β cells contributes to T2D progression by regulating genes required for insulin exocytosis.
View Article and Find Full Text PDFPerinatal exposure to starvation is a risk factor for development of severe retinopathy in adult patients with diabetes. However, the underlying mechanisms are not completely understood. In the present study, we shed light on molecular consequences of exposure to short-time glucose starvation on the transcriptome profile of mouse embryonic retinal cells.
View Article and Find Full Text PDFPurpose: Intrauterine undernutrition is associated with increased risk of type 2 diabetes. Children born premature or small for gestational age were reported to have abnormal retinal vascularization. However, whether intrauterine famine act as a trigger for diabetes complications, including retinopathy, is unknown.
View Article and Find Full Text PDFThe amplification of glucose-stimulated insulin secretion (GSIS) through incretin signaling is critical for maintaining physiological glucose levels. Incretins, like glucagon-like peptide 1 (GLP1), are a target of type 2 diabetes drugs aiming to enhance insulin secretion. Here we show that the protein phosphatase 1 inhibitor protein 1A (PPP1R1A), is expressed in β-cells and that its expression is reduced in dysfunctional β-cells lacking MafA and upon acute MafA knock down.
View Article and Find Full Text PDFMaternal drug abuse during pregnancy is a rapidly escalating societal problem. Psychostimulants, including amphetamine, cocaine, and methamphetamine, are amongst the illicit drugs most commonly consumed by pregnant women. Neuropharmacology concepts posit that psychostimulants affect monoamine signaling in the nervous system by their affinities to neurotransmitter reuptake and vesicular transporters to heighten neurotransmitter availability extracellularly.
View Article and Find Full Text PDFA rare loss-of-function allele p.Arg138* in SLC30A8 encoding the zinc transporter 8 (ZnT8), which is enriched in Western Finland, protects against type 2 diabetes (T2D). We recruited relatives of the identified carriers and showed that protection was associated with better insulin secretion due to enhanced glucose responsiveness and proinsulin conversion, particularly when compared with individuals matched for the genotype of a common T2D-risk allele in SLC30A8, p.
View Article and Find Full Text PDFMaf transcription factors are critical regulators of beta-cell function. We have previously shown that reduced MafA expression in human and mouse islets is associated with a pro-inflammatory gene signature. Here, we investigate if the loss of Maf transcription factors induced autoimmune processes in the pancreas.
View Article and Find Full Text PDFVoltage-gated Ca (Ca) channels trigger glucose-induced insulin secretion in pancreatic beta-cell and their dysfunction increases diabetes risk. These heteromeric complexes include the main subunit alpha1, and the accessory ones, including subunit gamma that remains unexplored. Here, we demonstrate that Ca gamma subunit 4 (Caγ4) is downregulated in islets from human donors with diabetes, diabetic Goto-Kakizaki (GK) rats, as well as under conditions of gluco-/lipotoxic stress.
View Article and Find Full Text PDFThe aquaglyceroporins are a subfamily of aquaporins that conduct both water and glycerol. Aquaporin-3 (AQP3) has an important physiological function in renal water reabsorption, and AQP3-mediated hydrogen peroxide (HO) permeability can enhance cytokine signaling in several cell types. The related aquaglyceroporin AQP7 is required for dendritic cell chemokine responses and antigen uptake.
View Article and Find Full Text PDFType 1 (T1D) and type 2 (T2D) diabetes are triggered by a combination of environmental and/or genetic factors. Maf transcription factors regulate pancreatic beta (β)-cell function, and have also been implicated in the regulation of immunomodulatory cytokines like interferon-β (IFNβ1). In this study, we assessed and co-expression with pro-inflammatory cytokine signaling genes in RNA-seq data from human pancreatic islets.
View Article and Find Full Text PDFVitamin A-derived retinoic acid (RA) signals are critical for the development of several organs, including the pancreas. However, the tissue-specific control of RA synthesis in organ and cell lineage development has only poorly been addressed in vivo. Here, we show that retinol dehydrogenase-10 (Rdh10), a key enzyme in embryonic RA production, has important functions in pancreas organogenesis and endocrine cell differentiation.
View Article and Find Full Text PDFBmi1 was originally identified as a gene that contributes to the development of mouse lymphoma by inhibiting MYC-induced apoptosis through repression of Ink4a and Arf. It codes for the Polycomb group protein BMI-1 and acts primarily as a transcriptional repressor via chromatin modifications. Although it binds to a large number of genomic regions, the direct BMI-1 target genes described so far do not explain the full spectrum of BMI-1-mediated effects.
View Article and Find Full Text PDFMonoamine and acetylcholine neurotransmitters from the autonomic nervous system (ANS) regulate insulin secretion in pancreatic islets. The molecular mechanisms controlling neurotransmitter signaling in islet β cells and their impact on diabetes development are only partially understood. Using a glucose-intolerant, MafA-deficient mouse model, we demonstrate that MAFA controls ANS-mediated insulin secretion by activating the transcription of nicotinic (ChrnB2 and ChrnB4) and adrenergic (Adra2A) receptor genes, which are integral parts of acetylcholine- and monoamine-signaling pathways.
View Article and Find Full Text PDFAims/hypothesis: The Gq-coupled 5-hydroxytryptamine 2B (5-HT2B) receptor is known to regulate the proliferation of islet beta cells during pregnancy. However, the role of serotonin in the control of insulin release is still controversial. The aim of the present study was to explore the role of the 5-HT2B receptor in the regulation of insulin secretion in mouse and human islets, as well as in clonal INS-1(832/13) cells.
View Article and Find Full Text PDFLack or dysfunction of insulin producing β cells results in the development of type 1 and type 2 diabetes mellitus, respectively. Insulin secretion is controlled by metabolic stimuli (glucose, fatty acids), but also by monoamine neurotransmitters, like dopamine, serotonin, and norepinephrine. Intracellular monoamine levels are controlled by monoamine oxidases (Mao) A and B.
View Article and Find Full Text PDFPrecise regulation of β-cell function is crucial for maintaining blood glucose homeostasis. Pax6 is an essential regulator of β-cell-specific factors like insulin and Glut2. Studies in the developing eye suggest that Pax6 interacts with Mitf to regulate pigment cell differentiation.
View Article and Find Full Text PDF