The use of chemical insecticides continues to play a major role in the control of disease vector populations, which is leading to the global dissemination of insecticide resistance. A greater capacity to detoxify insecticides, due to an increase in the expression or activity of three major enzyme families, also known as metabolic resistance, is one major resistance mechanisms. The esterase family of enzymes hydrolyse ester bonds, which are present in a wide range of insecticides; therefore, these enzymes may be involved in resistance to the main chemicals employed in control programs.
View Article and Find Full Text PDFIn Brazil, Aedes aegypti resistance to temephos, used since 1967, was detected in several municipalities in 2000. Organophosphates were substituted by pyrethroids against adults and, in some localities, by Bti against larvae. However, high temephos resistance ratios were still detected between 2001 and 2004.
View Article and Find Full Text PDFJ Med Entomol
September 2005
The susceptibility of Aedes aegypti (L.) larvae from several Brazilian populations to the juvenile hormone analog methoprene and the organophosphate insecticide temephos were investigated. Populations from Natal (northeastern region), Macapá (northern region), and Jardim América, Rio de Janeiro (southeastern region) are temephos-resistant (RR90 = 24.
View Article and Find Full Text PDF