Domain generalization is a ubiquitous challenge for machine learning in healthcare. Model performance in real-world conditions might be lower than expected because of discrepancies between the data encountered during deployment and development. Underrepresentation of some groups or conditions during model development is a common cause of this phenomenon.
View Article and Find Full Text PDFAssessment of mental workload in real-world conditions is key to ensuring the performance of workers executing tasks that demand sustained attention. Previous literature has employed electroencephalography (EEG) to this end despite having observed that EEG correlates of mental workload vary across subjects and physical strain, thus making it difficult to devise models capable of simultaneously presenting reliable performance across users. Domain adaptation consists of a set of strategies that aim at allowing for improving machine learning systems performance on unseen data at training time.
View Article and Find Full Text PDFRecently, due to the emergence of mobile electroencephalography (EEG) devices, assessment of mental workload in highly ecological settings has gained popularity. In such settings, however, motion and other common artifacts have been shown to severely hamper signal quality and to degrade mental workload assessment performance. Here, we show that classical EEG enhancement algorithms, conventionally developed to remove ocular and muscle artifacts, are not optimal in settings where participant movement (e.
View Article and Find Full Text PDFWith the burgeoning of wearable devices and passive body/brain-computer interfaces (B/BCIs), automated stress monitoring in everyday settings has gained significant attention recently, with applications ranging from serious games to clinical monitoring. With mobile users, however, challenges arise due to other overlapping (and potentially confounding) physiological responses (e.g.
View Article and Find Full Text PDFAssessment of mental workload is crucial for applications that require sustained attention and where conditions such as mental fatigue and drowsiness must be avoided. Previous work that attempted to devise objective methods to model mental workload were mainly based on neurological or physiological data collected when the participants performed tasks that did not involve physical activity. While such models may be useful for scenarios that involve static operators, they may not apply in real-world situations where operators are performing tasks under varying levels of physical activity, such as those faced by first responders, firefighters, and police officers.
View Article and Find Full Text PDFMental workload assessment is crucial in many real life applications which require constant attention and where imbalance of mental workload resources may cause safety hazards. As such, mental workload and its relationship with heart rate variability (HRV) have been well studied in the literature. However, the majority of the developed models have assumed individuals are not ambulant, thus bypassing the issue of movement-related electrocardiography (ECG) artifacts and changing heart beat dynamics due to physical activity.
View Article and Find Full Text PDFContext: Electroencephalography (EEG) is a complex signal and can require several years of training, as well as advanced signal processing and feature extraction methodologies to be correctly interpreted. Recently, deep learning (DL) has shown great promise in helping make sense of EEG signals due to its capacity to learn good feature representations from raw data. Whether DL truly presents advantages as compared to more traditional EEG processing approaches, however, remains an open question.
View Article and Find Full Text PDF