Publications by authors named "Isabel Vogt"

Background: This study aims to evaluate patients with locally advanced cervical cancer who underwent definitive radiochemotherapy, including brachytherapy, at the University Hospital of Muenster (UKM), focusing on target volume coverage, oncologic outcome parameters, and organs at risk (OAR) toxicities. Results are compared with the Gyn GEC-ESTRO (GGE) recommendations.

Methods: Of a cohort of 48 patients, treated between 2013 and 2023, the physical radiation treatment planning with application of CT and MRI and oncologic follow-up data was analyzed.

View Article and Find Full Text PDF

Dietary phosphate intake in the Western population greatly exceeds the recommended dietary allowance and is linked to enhanced cardiovascular and all-cause mortality. It is unclear whether a chronic high phosphate diet (HPD) causes kidney injury in healthy individuals. Here, we show that feeding a 2% HPD in C57BL/6N mice for one up to six months resulted in hyperphosphatemia, hyperphosphaturia, increased plasma levels of fibroblast growth factor (FGF) 23, and parathyroid hormone (PTH) compared to mice on a 0.

View Article and Find Full Text PDF

Phosphate is essential for proper cell function by providing the fundamentals for DNA, cellular structure, signaling and energy production. The homeostasis of phosphate is regulated by the phosphaturic hormones fibroblast growth factor (FGF) 23 and parathyroid hormone (PTH). Recent studies indicate that phosphate induces phosphate sensing mechanisms via binding to surface receptors and phosphate cotransporters leading to feedback loops for additional regulation of serum phosphate concentrations as well as by phosphate itself.

View Article and Find Full Text PDF

Enhanced fibroblast growth factor 23 (FGF23) is associated with left ventricular hypertrophy (LVH) in patients with chronic kidney and heart disease. Experimentally, FGF23 directly induces cardiac hypertrophy and vice versa cardiac hypertrophy stimulates FGF23. Besides the bone, FGF23 is expressed by cardiac myocytes, whereas its synthesis in other cardiac cell types and its paracrine role in the heart in health and disease is unknown.

View Article and Find Full Text PDF

Fibroblast growth factor (FGF) 23 is elevated in chronic kidney disease (CKD) to maintain phosphate homeostasis. FGF23 is associated with left ventricular hypertrophy (LVH) in CKD and induces LVH klotho-independent FGFR4-mediated activation of calcineurin/nuclear factor of activated T cells (NFAT) signaling in animal models, displaying systemic alterations possibly contributing to heart injury. Whether elevated FGF23 causes LVH in healthy animals is unknown.

View Article and Find Full Text PDF

Elevated levels of fibroblast growth factor 23 (FGF23) and phosphate are highly associated with increased cardiovascular disease and mortality in patients suffering from chronic kidney disease (CKD). As the kidney function declines, serum phosphate levels rise and subsequently induce the secretion of the phosphaturic hormone FGF23. In early stages of CKD, FGF23 prevents the increase of serum phosphate levels and thereby attenuates phosphate-induced vascular calcification, whereas in end-stage kidney disease, FGF23 fails to maintain phosphate homeostasis.

View Article and Find Full Text PDF

Clinical and experimental studies indicate a possible link between high serum levels of fibroblast growth factor 23 (FGF23), phosphate, and parathyroid hormone (PTH), deficiency of active vitamin D (1,25D) and klotho with the development of pathological cardiac remodeling, i.e., left ventricular hypertrophy and myocardial fibrosis, but a causal link has not been established so far.

View Article and Find Full Text PDF