Background: Vestibular schwannomas (VS) are complex and heterogeneous human tumors arising from the Schwann cell compartment of the vestibulocochlear nerve. VS cause significant neurological deficit such as hearing loss and vestibular impairment, and in some cases death due to brainstem compression. There is an urgent need to find pharmacotherapies for VS since surgical removal and stereotactic radiosurgery are the only effective treatments.
View Article and Find Full Text PDFHearing loss is a common side effect of many tumor treatments. However, hearing loss can also occur as a direct result of certain tumors of the nervous system, the most common of which are the vestibular schwannomas (VS). These tumors arise from Schwann cells of the vestibulocochlear nerve and their main cause is the loss of function of NF2, with 95 % of cases being sporadic and 5 % being part of the rare neurofibromatosis type 2 (NF2)-related Schwannomatosis.
View Article and Find Full Text PDFInherited hearing impairment is a remarkably heterogeneous monogenic condition, involving hundreds of genes, most of them with very small (< 1%) epidemiological contributions. The exception is GJB2, the gene encoding connexin-26 and underlying DFNB1, which is the most frequent type of autosomal recessive non-syndromic hearing impairment (ARNSHI) in most populations (up to 40% of ARNSHI cases). DFNB1 is caused by different types of pathogenic variants in GJB2, but also by large deletions that keep the gene intact but remove an upstream regulatory element that is essential for its expression.
View Article and Find Full Text PDFThe use of cochlear implants (CIs) is on the rise for patients with vestibular schwannoma (VS). Besides CI following tumor resection, new scenarios such as implantation in observed and/or irradiated tumors are becoming increasingly common. A significant emerging trend is the need of intraoperative evaluation of the functionality of the cochlear nerve in order to decide if a CI would be placed.
View Article and Find Full Text PDFActa Otorrinolaringol Esp (Engl Ed)
August 2024
Developmental senescence is a form of programmed senescence that contributes to morphogenesis during embryonic development. We showed recently that the SIX1 homeoprotein, an essential regulator of organogenesis, is also a repressor of adult cellular senescence. Alterations in the SIX/EYA pathway are linked to the human branchio-oto-renal (BOR) syndrome, a rare congenital disorder associated with defects in the ears, kidneys and branchial arches.
View Article and Find Full Text PDFInsulin-like growth factor 1 (IGF-1) is a trophic factor for the nervous system where it exerts pleiotropic effects, including the regulation of metabolic homeostasis. IGF-1 deficiency induces morphological alterations in the cochlea, apoptosis and hearing loss. While multiple studies have addressed the role of IGF-1 in hearing protection, its potential function in the modulation of otic metabolism remains unclear.
View Article and Find Full Text PDFInsulin-like growth factor 1 (IGF-1) is a peptide hormone belonging to the insulin family of proteins. Almost all of the biological effects of IGF-1 are mediated through binding to its high-affinity tyrosine kinase receptor (IGF1R), a transmembrane receptor belonging to the insulin receptor family. Factors, receptors and IGF-binding proteins form the IGF system, which has multiple roles in mammalian development, adult tissue homeostasis, and aging.
View Article and Find Full Text PDFStress-activated protein kinases (SAPK) are associated with sensorineural hearing loss (SNHL) of multiple etiologies. Their activity is tightly regulated by dual-specificity phosphatase 1 (DUSP1), whose loss of function leads to sustained SAPK activation. gene knockout in mice accelerates SNHL progression and triggers inflammation, redox imbalance and hair cell (HC) death.
View Article and Find Full Text PDFNitrones are potent antioxidant molecules able to reduce oxidative stress by trapping reactive oxygen and nitrogen species. The antioxidant potential of nitrones has been extensively tested in multiple models of human diseases. Sensorineural hearing loss has a heterogeneous etiology, genetic alterations, aging, toxins or exposure to noise can cause damage to hair cells at the organ of Corti, the hearing receptor.
View Article and Find Full Text PDFInsulin-like growth factor 1 (IGF-1) deficiency is an ultrarare syndromic human sensorineural deafness. Accordingly, IGF-1 is essential for the postnatal maturation of the cochlea and the correct wiring of hearing in mice. Less severe decreases in human IGF-1 levels have been associated with other hearing loss rare genetic syndromes, as well as with age-related hearing loss (ARHL).
View Article and Find Full Text PDFSphingolipids are bioactive lipid components of cell membranes with important signal transduction functions in health and disease. Ceramide is the central building block for sphingolipid biosynthesis and is processed to form structurally and functionally distinct sphingolipids. Ceramide can be phosphorylated by ceramide kinase (CERK) to generate ceramide-1-phosphate, a cytoprotective signaling molecule that has been widely studied in multiple tissues and organs, including the developing otocyst.
View Article and Find Full Text PDFAging of the auditory system is associated with the incremental production of reactive oxygen species (ROS) and the accumulation of oxidative damage in macromolecules, which contributes to cellular malfunction, compromises cell viability, and, ultimately, leads to functional decline. Cellular detoxification relies in part on the production of NADPH, which is an important cofactor for major cellular antioxidant systems. NADPH is produced principally by the housekeeping enzyme glucose-6-phosphate dehydrogenase (G6PD), which catalyzes the rate-limiting step in the pentose phosphate pathway.
View Article and Find Full Text PDFAnimal models are invaluable for biomedical research, especially in the context of rare diseases, which have a very low prevalence and are often complex. Concretely mouse models provide key information on rare disease mechanisms and therapeutic strategies that cannot be obtained by using only alternative methods, and greatly contribute to accelerate the development of new therapeutic options for rare diseases. Despite this, the use of experimental animals remains controversial.
View Article and Find Full Text PDFCellular senescence has classically been associated with aging. Intriguingly, recent studies have also unraveled key roles for senescence in embryonic development, regeneration, and reprogramming. Developmental senescence has been reported during embryonic development in different organisms and structures, such as the endolymphatic duct during inner ear development of mammals and birds.
View Article and Find Full Text PDFIntroduction: Excessive exposure to noise is a common occurrence that contributes to approximately 50% of the non-genetic hearing loss cases. Researchers need to develop standardized preclinical models and identify molecular targets to effectively develop prevention and curative therapies.
Areas Covered: In this review, the authors discuss the many facets of human noise-induced pathology, and the primary experimental models for studying the basic mechanisms of noise-induced damage, making connections and inferences among basic science studies, preclinical proofs of concept and clinical trials.
Vestibular schwannomas (VSs) are benign tumors composed of differentiated neoplastic Schwann cells. They can be classified into two groups: sporadic VS and those associated with neurofibromatosis type 2 (NF2). VSs usually grow slowly, initially causing unilateral sensorineural hearing loss (HL) and tinnitus.
View Article and Find Full Text PDFCisplatin is a chemotherapeutic agent that causes the irreversible death of auditory sensory cells, leading to hearing loss. Local administration of cytoprotective drugs is a potentially better option co-therapy for cisplatin, but there are strong limitations due to the difficulty of accessing the inner ear. The use of nanocarriers for the efficient delivery of drugs to auditory cells is a novel approach for this problem.
View Article and Find Full Text PDFEmbryonic development requires the coordinated regulation of apoptosis, survival, autophagy, proliferation and differentiation programs. Senescence has recently joined the cellular processes required to master development, in addition to its well-described roles in cancer and ageing. Here, we show that senescent cells are present in a highly regulated temporal pattern in the developing vertebrate inner ear, first, surrounding the otic pore and, later, in the otocyst at the endolymphatic duct.
View Article and Find Full Text PDF