Photothermal microneedle (MN) arrays have the potential to improve the treatment of various skin conditions such as bacterial skin infections. However, the fabrication of photothermal MN arrays relies on time-consuming and potentially expensive microfabrication and molding techniques, which limits their size and translation to clinical application. Furthermore, the traditional mold-and-casting method is often limited in terms of the size customizability of the photothermal array.
View Article and Find Full Text PDFNear-infrared (NIR) photothermal therapy by microneedles (MNs) exhibits high potential against skin diseases. However, high costs, photobleaching of organic agents, low long-term stability, and potential nanotoxicity limit the clinical translation of photothermal MNs. Here, photothermal MNs are developed by utilizing Au nanoaggregates made by flame aerosol technology and incorporated in water-insoluble polymer matrix to reduce intradermal nanoparticle (NP) deposition.
View Article and Find Full Text PDF