Publications by authors named "Isabel Riba Garcia"

Age-related macular degeneration (AMD) is a leading cause of visual loss. It has a strong genetic basis, and common haplotypes on chromosome (Chr) 1 (CFH Y402H variant) and on Chr10 (near HTRA1/ARMS2) contribute the most risk. Little is known about the early molecular and cellular processes in AMD, and we hypothesized that analyzing submacular tissue from older donors with genetic risk but without clinical features of AMD would provide biological insights.

View Article and Find Full Text PDF

Background: The first-line therapy for rheumatoid arthritis (RA) is weekly oral methotrexate (MTX) at low dosages (7.5-25 mg/week). However, ~40% of patients are non-adherent which may explain why some do not respond and need to start more expensive biological therapies.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that currently affects 36 million people worldwide with no effective treatment available. Development of AD follows a distinctive pattern in the brain and is poorly modelled in animals. Therefore, it is vital to widen the spatial scope of the study of AD and prioritise the study of human brains.

View Article and Find Full Text PDF

Here we provide data describing the time-course of blood-glucose and fluid-intake profiles of diabetic hemizygous human-amylin (hA) transgenic mice orally treated with rutin, and matched control mice treated with water. We employed "parametric change-point regression analysis" for investigation of differences in time-course profiles between the control and rutin-treatment groups to extract, for each animal, baseline levels of blood glucose and fluid-intake, the change-point time at which blood glucose (diabetes-onset) and fluid-intake (polydipsia-onset) accelerated away from baseline, and the rate of this acceleration. The parametric change-point regression approach applied here allowed a much more accurate determination of the exact time of onset of diabetes than do the standard diagnostic criteria.

View Article and Find Full Text PDF

Pancreatic islet β-cells secrete the hormones insulin and amylin, and defective β-cell function plays a central role in the pathogenesis of type-2 diabetes (T2D). Human amylin (hA, also termed hIAPP) misfolds and forms amyloid aggregates whereas orthologous mouse amylin does neither. Furthermore, hA elicits apoptosis in cultured β-cells and β-cell death in ex-vivo islets.

View Article and Find Full Text PDF

As data rates rise, there is a danger that informatics for high-throughput LC-MS becomes more opaque and inaccessible to practitioners. It is therefore critical that efficient visualisation tools are available to facilitate quality control, verification, validation, interpretation, and sharing of raw MS data and the results of MS analyses. Currently, MS data is stored as contiguous spectra.

View Article and Find Full Text PDF

Background: Proteomic data is a potentially rich, but arguably unexploited, data source for genome annotation. Peptide identifications from tandem mass spectrometry provide prima facie evidence for gene predictions and can discriminate over a set of candidate gene models. Here we apply this to the recently sequenced Aspergillus niger fungal genome from the Joint Genome Institutes (JGI) and another predicted protein set from another A.

View Article and Find Full Text PDF

The structures of peptide a- and b-type fragment ions were studied using synthetic peptides including a set of isomeric peptides, differing in the sequence location of an alanine residue labeled with (15)N and uniformly with (13)C. The pattern of isotope labeling of second-generation fragment ions derived via a(n) and b(n) ions (where n = 4 or 5) suggested that these intermediates existed in part as macrocyclic structures, where alternative sites of ring opening gave rise to different linear forms whose simple cleavage might give rise to the observed final products. Similar conclusions were derived from combined ion mobility/tandem MS analyses where different fragmentation patterns were observed for isomeric a- or b-type ions that display different ion mobilities.

View Article and Find Full Text PDF

We have used DNA microarray technology and 2-D gel electrophoresis combined with mass spectrometry to investigate the effects of a drastic heat shock from 30 to 50 on a genome-wide scale. This experimental condition is used to differentiate between wild-type cells and those with a constitutively active cAMP-dependent pathway in Saccharomyces cerevisiae. Whilst more than 50% of the former survive this shock, almost all of the latter lose viability.

View Article and Find Full Text PDF

Tandem mass spectrometry (MS/MS) of peptides plays a key role in the field of proteomics, and an understanding of the fragmentation mechanisms involved is vital for data interpretation. Not all the fragment ions observed by low-energy collision-induced dissociation of protonated peptides are readily explained by the generally accepted structures for a- and b-ions. The possibility of a macrocyclic structure for b-type ions has been recently proposed.

View Article and Find Full Text PDF

Bicyclomycin (1) is the only natural product inhibitor of the transcription termination factor rho. Rho is a hexameric helicase that terminates nascent RNA transcripts utilizing ATP hydrolysis and is an essential protein for many bacteria. The paucity of information concerning the 1-rho interaction stems from the weak binding affinity of 1.

View Article and Find Full Text PDF

Saccharomyces cerevisiae activates general amino acid control (GCN) in response to amino acid starvation. Some aspects of this response are known to be conserved in other fungi including Candida albicans, the major systemic fungal pathogen of humans. Here, we describe a proteomic comparison of the GCN responses in S.

View Article and Find Full Text PDF

Both the generation and the analysis of proteome data are becoming increasingly widespread, and the field of proteomics is moving incrementally toward high-throughput approaches. Techniques are also increasing in complexity as the relevant technologies evolve. A standard representation of both the methods used and the data generated in proteomics experiments, analogous to that of the MIAME (minimum information about a microarray experiment) guidelines for transcriptomics, and the associated MAGE (microarray gene expression) object model and XML (extensible markup language) implementation, has yet to emerge.

View Article and Find Full Text PDF

Functional genomic experiments frequently involve a comparison of the levels of gene expression between two or more genetic, developmental, or physiological states. Such comparisons can be carried out at either the RNA (transcriptome) or protein (proteome) level, but there is often a lack of congruence between parallel analyses using these two approaches. To fully interpret protein abundance data from proteomic experiments, it is necessary to understand the contributions made by the opposing processes of synthesis and degradation to the transition between the states compared.

View Article and Find Full Text PDF

Peptide mass fingerprinting (PMF) is a powerful technique for identification of proteins derived from in-gel digests by virtue of their matrix-assisted laser desorption/ionization-time of flight mass spectra. However, there are circumstances where the under-representation of peptides in the mass spectrum and the complexity of the source proteome mean that PMF is inadequate as an identification tool. In this paper, we show that identification is substantially enhanced by inclusion of composition data for a single amino acid.

View Article and Find Full Text PDF