Publications by authors named "Isabel Rambaldi"

Neuroinflammation can positively influence axon regeneration following injury in the central nervous system. Inflammation promotes the release of neurotrophic molecules and stimulates intrinsic proregenerative molecular machinery in neurons, but the detailed mechanisms driving this effect are not fully understood. We evaluated how microRNAs are regulated in retinal neurons in response to intraocular inflammation to identify their potential role in axon regeneration.

View Article and Find Full Text PDF

In contrast to neurons in the CNS, damaged neurons from the peripheral nervous system (PNS) regenerate, but this process can be slow and imperfect. Successful regeneration is orchestrated by cytoskeletal reorganization at the tip of the proximal axon segment and cytoskeletal disassembly of the distal segment. Collapsin response mediator protein 4 (CRMP4) is a cytosolic phospho-protein that regulates the actin and microtubule cytoskeleton.

View Article and Find Full Text PDF

Multiple sclerosis is a chronic inflammatory, demyelinating, and neurodegenerative disease affecting the brain, spinal cord and optic nerves. Neuronal damage is triggered by various harmful factors that engage diverse signalling cascades in neurons; thus, therapeutic approaches to protect neurons will need to focus on agents that can target multiple biological processes. We have therefore focused our attention on microRNAs: small non-coding RNAs that primarily function as post-transcriptional regulators that target messenger RNAs and repress their translation into proteins.

View Article and Find Full Text PDF

Cell-surface molecules are dynamically regulated at the synapse to assemble and disassemble adhesive contacts that are important for synaptogenesis and for tuning synaptic transmission. Metalloproteinases dynamically regulate cellular behaviors through the processing of cell surface molecules. In the present study, we evaluated the role of membrane-type metalloproteinases (MT-MMPs) in excitatory synaptogenesis.

View Article and Find Full Text PDF

The small GTPase RhoA regulates the actin cytoskeleton to affect multiple cellular processes including endocytosis, migration and adhesion. RhoA activity is tightly regulated through several mechanisms including GDP/GTP cycling, phosphorylation, glycosylation and prenylation. Previous reports have also reported that cleavage of the carboxy-terminus inactivates RhoA.

View Article and Find Full Text PDF

Axonal damage can occur in the central nervous system following trauma, during the course of autoimmune and neurodegenerative disease and during viral and bacterial infections. The degree of axonal damage and absence of spontaneous repair are major determinants of long-term clinical outcome. While inflammation is a common feature of these conditions, the impact of particular immune cell subsets and their products on injured axons is not fully known.

View Article and Find Full Text PDF

The molecular mechanisms that underlie the axonal damage that accompanies CNS inflammation are largely unknown. Here, we investigate the effects of immune cells on neuronal viability and axonal growth and show that conditioned media from myeloid lineage cells inhibit neurite outgrowth without causing apoptosis. Treatment with monocyte conditioned medium enhances myosin light chain phosphorylation in neurons and the neurite outgrowth inhibitory effect of myeloid lineage cells can be attenuated with the myosin II inhibitor blebbistatin.

View Article and Find Full Text PDF

The etiology of multiple sclerosis (MS) has not been fully elucidated, however evidence supports an autoimmune disease model notable for the infiltration of pro-inflammatory immune cells into sites of active demyelination and axonal injury. Previous findings demonstrate that neutralization of Nogo, a protein originally identified as a myelin-associated inhibitor (MAI) of axon regeneration, ameliorates experimental autoimmune encephalomyelitis (EAE), a commonly used animal model of MS. More efficient axonal regeneration was suggested as a mechanism underlying the improved EAE outcome.

View Article and Find Full Text PDF

The antero-posterior (AP) and dorso-ventral (DV) patterning of the neural tube is controlled in part by HOX and PAX transcription factors, respectively. We have reported on a neural enhancer of Hoxd4 that directs expression in the CNS with the correct anterior border in the hindbrain. Comparison to the orthologous enhancer of zebrafish revealed seven conserved footprints including an obligatory retinoic acid response element (RARE), and adjacent sites D, E and F.

View Article and Find Full Text PDF

MEIS proteins form heteromeric DNA-binding complexes with PBX monomers and PBX.HOX heterodimers. We have shown previously that transcriptional activation by PBX.

View Article and Find Full Text PDF

Hox genes are differentially expressed along the embryonic anteroposterior axis. We used chromatin immunoprecipitation to detect chromatin changes at the Hoxd4 locus during neurogenesis in P19 cells and embryonic day 8.0 (E8.

View Article and Find Full Text PDF

The PREP, MEIS, and PBX families are mammalian members of the TALE (three amino acid loop extension) class of homeodomain-containing transcription factors. These factors have been implicated in cooperative DNA binding with the HOX class of homeoproteins, but PREP and MEIS interact with PBX in apparently non-HOX-dependent cooperative DNA binding as well. PREP, MEIS, and PBX have all been reported to reside in the cytoplasm in one or more tissues of the developing vertebrate embryo.

View Article and Find Full Text PDF

Human WDR9 has been mapped to chromosome 21, within one of the Down syndrome (DS) critical regions. Here, we study the expression pattern of the murine Wdr9 gene and its protein product. We show that Wdr9 is broadly expressed in the mouse embryo by means of in situ hybridization and immunohistochemistry.

View Article and Find Full Text PDF

In the absence of MEIS family proteins, two mechanisms are known to restrict the PBX family of homeodomain (HD) transcription factors to the cytoplasm. First, PBX is actively exported from the nucleus via a CRM1-dependent pathway. Second, nuclear localization signals (NLSs) within the PBX HD are masked by intramolecular contacts.

View Article and Find Full Text PDF

We describe Prep2, a new murine homeobox-containing gene closely related to Prep1. The PREP2 protein belongs to the three amino acid loop extension (TALE) superclass of homeodomain-containing proteins and encodes a polypeptide of 462 residues. As for PREP1, PREP2 binds an appropriate site on DNA as a heterodimer with PBX1A.

View Article and Find Full Text PDF